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LECTURE 1: The Quantification of Sound and the Wave Equation 

Required Reading:  Denes & Pinson Chapters 1-3; 
Supplemental reading: Kinsler et al (KFCS) pg 99-111 

1.  The Basic Physical Attributes of Sound: What is Sound?  How is it Produced?  How does it 
Propagate?  
  
Sound is a propagating mechanical disturbance in a 
medium.  Propagation of sound does not occur via net 
translocation of matter, it is the mechanical disturbance 
that propagates.  Most of the course will be spent 
discussing sound in fluid media such as air and water.  The 
picture on the right shows a cam driven piston at the end of 
a rigid tube.  When the piston is set into oscillation, 
successive layers of the air medium within the tube are also 
set into motion causing local increases and decreases in the 
density of air (coded in shades of gray). Associated with 
the net back and forth oscillations of the air particles are 
increases (condensations) and decreases (rarefactions) in 
local pressure.  The velocity with which the particle 
oscillates is the particle velocity, while the velocity with 
which the disturbance in pressure and velocity moves down 
the tube is the propagation velocity of sound. Note that the 
variations in density have been greatly amplified for 
viewing purposes (after HF Olsen, ‘Music Physics and 
Engineering’ Dover Press 1967). 

 
 
 
 
 

Image removed due to copyright 
considerations. 

 Source: Olsen, H. F. Music Physics 
and Engineering. Dover Press, 1967. 

 

 
A. Sound Pressure, p(t),  is the variation about the baseline pressure that results from the alternating 
condensations and rarefactions of media that describe the propagating sound wave.  The units of 
sound pressure are pascals, where 1 Pa = 1 newton/m2.  A sound pressure of 1 Pa at 1000 Hz is of 
uncomfortable but not painful loudness.  This loud pressure is equivalent to 1/100,000 of an 
atmosphere and 50,000 times the lowest sound pressures that are audible.  Sound Pressure is a scalar 
quantity. 
 
B. Particle Velocity, v (t)is a vector quantity that describes the alternating average velocity of 
motion of a particle of medium.  The units of particle velocity are m/s. 
An acoustic particle is “a volume element large enough to contain millions of molecules so that the 
fluid may be thought of as a continuous medium, yet small enough that all acoustic variables may be 
considered nearly constant throughout...”  (KFC&S, page 99). 
Particle size depends on the medium and the frequency.  A medium excited by large wave length 
sounds can be broken into larger (more voluminous) particles than a medium excited by sounds with 
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smaller wave lengths. What’s important is that within the particle the sound pressure and the average 
motion of the particles is constant.  A particle of free air exposed to a sinusoidal sound pressure of 1 
Pa, moves back and forth with a velocity amplitude of about 2 mm/s.  How does that compare with 
the propagation velocity (speed of sound) in air? 
 
The definition of an acoustic particle is relevant to an important issue in acoustics, i.e. whether we 
can consider a system to be made up of a collection of ‘lumped elements’ which behave as particles 
or ‘distributed systems’ which behave like continuous media and support wave motion.  We will 
revisit this distinction regularly throughout the coming term. 
 
C. Scalars and Vectors 
 Scalars describe nondirectional physical processes like pressure.  Vectors describe the 
magnitude and direction of directional physical processes like force and velocity.  A vector can be 
broken into its three-dimensional components, e.g. 
 v = i xvx + i yvy + i zvz  (1.0) 

Where:  i x , i y and i z  are unit vectors in the x, y and z directions, and 
  are scalars that define the magnitudes of the x, y and z component vectors. vx,vy and vz
 
D.  Sound Frequency, f, describes the temporal variation of a pure tone, e.g.  

p(t) = Acos 2πf t + θ( ), where 2πf =ω, the radian frequency (1.1)   
 
E. The Density of the Sound Conducting Medium,ρ, is the mass per unit volume of the medium with 
SI units of kg/m3. The density of air at Standard Temperature & Pressure (20°C and 1 atm) ρ0 is 
about 1.21 kg/m3.  The density of gases goes up as pressure increases and goes down as temperature 
increases. 
 
F.  Linear Acoustics   

For most, if not all, of this course we will deal with sound flow through fluid media (mostly 
air) in a regimen know as linear acoustics.  As sound travels through a medium there are temporal 
and spatial variations in the pressure, density, particle velocity and temperature associated with the 
sound.   

sound pressure: p(x,y,z,t) = pTotal (x,y,z,t) − P0 , 
particle velocity: v (x, y,z,t) = vx (x,y, z, t)i x + vy (...)i y + vz (...)i z , 
sound density: ρ(x,y,z, t) = ρTotal (x,y,z,t) − ρ0  and 
sound temperature: T(x,y,z,t) = TTotal (x,y,z,t) − T0  
 
In linear acoustics the sound-induced variations in pressure p, density ρ and temperature T are small 
compared to the baseline value of these quantities P0, ρ0 and T0.   
 
G. The Bulk modulus, B of a material is the pressure difference associated with a fractional change in 
the volume of the material.  If we consider a collection of air particles of volume V1 at pressure P1, 
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and we then change the pressure acting on the volume to P2 with a resultant new volume of V2, the 
bulk modulus is: 

 B =
P2 − P1

V1 −V2( ) V2
   with units of pressure. (1.2) 

For ideal gases at 1 atmosphere with isothermal compression Boyles’ law tells us B=1 atm =105 Pa.  
In cases of adiabatic compression  of an ideal gas at P0 = 1 atm: BA=γP0 = γ 105 Pa.  For diatomic 
gases like N2 and O2 γ, the ratio of specific heats,  = 1.4  .  For monatomic gases like He γ = 1.67  .  
Air, which is mostly diatomic gases has a specific heat of γ = 1.41 such that at 1 atm and 20° C,  
BA= 1.41 × 105 Pa  . 

H. The Propagation Velocity of Sound, c, depends on the stiffness and density of the sound-
conducting medium, i.e. 
 c = BA ρ0   with units of m/s. (1.3) 

Why do we use the adiabatic compressibility?   
At standard temperature and pressure (20°C and 1 atm) c ≈ 340 m/s. 
 
I.  The wavelength of sound λ, depends on sound frequency and the propagation velocity,  
 λ = c

f  with units of meters per cycle (1.4) 

 Since the human ear is sensitive to sound pressures of frequencies varying from 20 Hz to 
20,000 Hz (aka 20 kHz), the wavelengths of the sounds to which we are sensitive vary from over 10 
meters to less than 2 cm.  This large variation from wave lengths that are much bigger than the 
objects around us to wave lengths that are smaller than the objects around us is one of the challenges 
of acoustics. 
 
Frequency (Hz) Wave length in 

air 
Comparable 

Structure 
Wave length in 

water 
Comparable 

Structure 
31.5 10.8 m class room 47m Olympic pool 
100 3.4 bed room 15 small yacht 
315 1.08 torso & head 4.7 small boat 

1,000 0.34 head 1.5 small human 
3,150 0.108 vocal tract 0.47 tuna 

10,000 0.034 ear canal 0.15 mackerel 
31,500 0.0108 human TM 0.047 anchovy 

100,000 0.0034 ossicle/gnat 0.015 chum 
 
J. The Characteristic Impedance, z0, is another property of the sound conducting medium that 
depends on the stiffness and density of the medium, i.e. 

 z0 = BAρ0 = ρ0c . (1.5) 

The characteristic impedance of a media relates the sound induced variations in pressure and particle 
velocity.  For the special case of a plane wave propagating in the x direction in free open space  

9-Sept-2004  3 
 



Lecture 1 Acoustics of Speech and Hearing 6.551/HST 714J 

 p(t) = z0vx (t).   (1.6) 

The unit of characteristic impedance is the rayl, named after Lord Rayleigh, where 1 rayl = 1Pa-s/m, 
i.e. the ratio of a pressure and a velocity.    
How does the characteristic impedance compare with electrical impedance and mechanical 
impedance? 
 
All of the formulae we have introduced thus far contain only real numbers.  This simplification 
is consistent with the plane-wave open-space constraint on Eqn 1.6, where that equation specifies 
that the patterns of temporal variations in particle velocity and pressure are identical.  As we will 
soon see, there can be significant differences in the temporal patterns of velocity and pressure in 
sound resulting in descriptions of impedance that depend on complex numbers. 

 

2. Simple Sounds: the Pure Tone. 
Figure 1.2 
The total pressure as a 
function of time is  

pT(t)=P0+p(t), 
at a point x in space in the 
presence of a propagating 
plane wave produced by a 
sound source playing a 
continuous tone.  The sound 
pressure is zero at time t =... 0, 
0.5, 1 ms ... 
 
 

99,998

100,000

100,002

TIME (ms)
0 0.5 1

A B S O L U T E  P R E S S U R E  ( P a )

What is the frequency of the tone in Fig 1.2? 
 
What is the peak amplitude of the sound pressure in Fig 1.2? 
 
What is the root-mean-square or rms amplitude of the sound pressure in Fig. 1.2? 

To compute rms amplitude:  square the waveform, average it over some characteristic time, 
and then take the square root of the average. 

 
Describe the wave in Figure 1.2 in terms of a cosine function of time.  
 
What is the amplitude/magnitude of the cosine function?  
 
What is the frequency? 
 
What is the phase angle? 
 
A. Magnitude and Phase: Complex notation 
 The fact that sinusoids can vary in magnitude and phase can be coded in terms of a complex 
number, e.g. a + jb, where a is the real part of the number, b is the imaginary part of the number and 
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 j = the imaginary number −1 . I use italic script to represent variables where lower-case variables 
generally refer to real constants or functions of time and upper-case variables generally refer to 
quantities that vary with frequency.  (An exception to this rule is BA.)  I denote complex variables 
with an underbar, e.g. B = a + jb.   

We can convert between the “rectangular” notion for complex numbers B = a + jb, and a 
“polar” notation B = Be j∠Bwhere the magnitude of the complex number B is 

 |B| = a2 + b2 ,  (1.7) 
and the angle of the complex number B is 

 ∠B = atan(b/a). (1.8) 

We can convert a complex magnitude and angle back into the rectangular real and imaginary 
components using Euler’s Equations, such that for B = a + jb: 

 
Real B{ }= a = B cos ∠B( ),  and

Imaginary B{ }= b = B sin ∠B( )
  . (1.) 

B. Euler’s Equations: the relationship between complex exponentials and sinusoids. 
i. Euler’s equations: 
   where j = −1  
 

e jθ = cosθ + j sinθ 

e− jθ = cosθ − j sinθ
 

ii.  A specific example:  
 

Ae j ωt+φ( ) = A cos ωt + φ( )+ j sin ωt + φ( )( ) 

iii.  Separation of (ii) into two complex  
    amplitudes,  one that is constant and one  
    dependent on time 
 

Ae jφe jωt = A cos ωt + φ( )+ j sin ωt + φ( )( ) 

iv.  A complex amplitude B with magnitude |B|   
    and phase angle ∠B  
 

Be jωt = B cos ωt + ∠B( )+ j sin ωt + ∠B( )( ) 

v.  Description of a simple cosine function by a   
  complex exponential 

Real Be jωt{ }= B cos ωt + ∠B( ) 

Row (i) notes Euler’s basic equations where a complex exponential amplitude of magnitude 1 and 
angle θ noted as ejθ has a real part of cosθ and an imaginary part of sinθ. 

Row (ii) gives another example of a complex exponential of magnitude = A and angle = (ωt+φ).  
Note that the angle argument has a component that varies with time t and radian frequency 
ω=2πf, and a component that is constant φ. 

In Row (iii) the complex exponential from the previous row is split into two components by simple 
algebra, i.e. Ae j ωt+φ( ) = Ae jφ Ae jωt . 

In Row (iv) we see the combination of two complex numbers B = Be j∠B and e jωt  yielding an 
argument to the cosine and sine terms made up of the time varying ωt and the constant ∠B. 

Row (v) describes a cosine function of magnitude |B| and angle ∠B as the real part of the product of 
two complex exponentials, one constant and the other time dependent. 

 
C.  The Specific Acoustic Impedance ZS 
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 With the introduction of complex amplitudes we can now give a more general description of 
acoustic impedance.  Suppose a sinusoidal source of frequency f produces a sound wave that passes 
through a point Q while propagating in direction x.  We can define the temporal variations in the 
sound pressure and the x-component of the velocity at point Q in terms of complex exponential 
amplitudes, where ω=2πf, and  
 p(t) = P cos ωt + ∠P( )= Real Pe jωt{ }, and 

 v x (t) = V cos ωt + ∠V( )= Real Ve jωt{ }. (1.10&b) 

 The specific acoustic impedance relating sound pressure and particle velocity at point Q is 
defined by the ratio of the complex amplitudes P and V, i.e. 

ZS = P
V   . (1.11)  

Note that ZS is: 
 -complex (it has a magnitude and an angle), 
 -independent of time, 
 -like the characteristic impedance of the medium has units of rayls, and 
 -unlike the characteristic impedance that describes the propagation of sound in an infinite 

expanse of a medium, the specific acoustic impedance can describe relationships between 
p(t) and v(t) where the two time functions are out of phase.  This is important when 
describing sound near objects, i.e. not in the free-field.  

D.  Sound Intensity and Power. 
 A more general metric of the amplitude of a sound wave is the Intensity or energy per unit 
time per unit area (joule/s/m2=watt/m2).  This quantity is sometimes called power density.  Why? 
 
 The average intensity of a sound wave is a real quantity related to the product of the sound 
pressure and the particle velocity.  We can define the instantaneous intensity in the x direction: 
 ix(t)=p(t) vx(t). (1.12) 
In the sinusoidal steady state: 
 ix (t) = P cos(ωt + ∠P) V cos(ωt + ∠V ). (1.13) 
Using the identity 

 cosacosb =
cos(a + b) + cos(a − b)

2
, leads to  

 ix (t) =
P V

2
cos(2ωt + ∠P + ∠V ) +

P V
2

cos(∠P −∠V ) . (1.14) 

 Since we are really interested in the intensity averaged over some time, we only need 
consider part of Eqn 1.14.  In particular note that the first term on the right-side of (1.14) is a cosine 
function with a frequency that is twice the frequency of the pressure and velocity variation.  The 
temporal average of such a sinusoidal function is zero for each cycle, and that term does not 
contribute to the average intensity which is a constant completely defined by the second term on the 
right, 

 I =
P V

2
cos(∠P −∠V ) . (1.15a) 

Note that the average intensity depends greatly on the phase relationship between P and V . If 
∠P=∠V then I=|PV|/2.  If ∠P and∠V differ by π/2 then I=0.  
 (1.15a) can also be written in terms of complex exponentials as 
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 I =
1
2

Real PV *{ },  (1.15b) 

where V* is the complex conjugate of V , i.e. V* =|V | e− j∠V .  
 We can also use the Specific Acoustic Impedance relating P and V to define sound intensity, 
where: ZS = P

V .  Substituting this relationship into 1.15b and realizing that V V*=|V|2 yields: 

 I =
1
2

Real PV *{ }=
1
2

V 2Real Z S{ }=
1
2

P 2Real 1
ZS

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (1.16) 

In the case of a plane wave ZS = z0 = ρ0c  and is real. 

 The average sound power Π  is I  (with units of power/area) times the area of the power 
collecting surface that is orthogonal to the direction of propagation of the wave. 
 
E. The decibel, dB, as Measure of Pressure and Intensity. 
 The decibel is a logarithmic description of the ratio of two energy levels.  The use of 
logarithmic scales to describe sound pressure and intensity stems from two facts:  
(1) The human ear responds to a wide range of sound intensities (about 6 orders of magnitude) and 
humans generally like to describe quantities in as few significant units as possible.  (2) Our ability to 
distinguish differences in the intensity of two sound signals, can be roughly described in terms of a 
threshold fractional difference in the intensity between the two, i.e.  sounds of intensity that are 
different by more than 25% are generally distinguishable while sounds of closer relative intensity are 
not.  This sensitivity to fractional changes is just what logarithmic scaling is all about, and is a 
common approximation for human sensation. (You’ll hear more about Weber’s and Fechner’s laws 
of psychophysical detection later in this course.)   
 The bel is a unit named after Boston’s own Alexander Graham Bell, where 1 bel describes an 
order of magnitude change in energy.  The decibel or dB breaks the bel into ten pieces where in the 
case of sound intensity (which is proportional to energy): 

 The dB value of Intensity =10log10
I
I0

, (1.17) 

where I0 is some arbitrary reference intensity level.   
A common intensity reference level in Speech and Hearing Science is the Sound Pressure Level 
(SPL) reference of 10-12watts/m2. 
 Equation 1.17 can be used to compute the dB level re some reference for any quantity that is 
proportional to energy, e.g. power or sound pressure.  However intensity and power are proportional 
to the square of sound pressure (see 1.16), and therefore to convert pressure measurements to some 
dB term:  

 The dB value of Intensity = 10log10
P

PRef

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

= 20log10
P

PRef
  . (1.18) 

The sound pressure reference level for Sound Pressure Level is 2x10-5 Pa.  You should use equation 
1.16 to convince yourself that the intensity and pressure references for SPL are consistent with each 
other. 
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3. Periodic Complex Signals 
 
Figure 1.3  Shows two periods of a periodic 
complex acoustic signal that can be 
characterized as an ‘exponentially decaying 
tone’.  The period of each repetition is 10 ms, the 
period of the ‘tonal’ component of the signal is 1 
ms. 
 
The signal has an rms amplitude of 0.27 Pa.  
What is its peak amplitude? 
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Two Cycles of a Periodic Wave Form

 
What are the frequencies within the complex signal of Figure 1.3? 
 What is the repetition frequency? 
 What is the frequency of the tonal component? 
 Are there other frequencies? 
 
A. Fourier’s  Theorem applied to periodic signals  
 Any periodic signal of period T can be reconstructed from the sum of a static component and 
a series of sinusoidal components that are harmonics of the repetition frequency. In general: 

 
For p(t) with period T,

p(t) = P0 + Pn
n=1

∞
∑ cos n2π 1

T
+ ∠Pn

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
 . (1.19) 

Fourier analysis of the time wave form in Figure 1.3 yields the magnitude and angle spectra below, 
where the lines on the left show the magnitude of the complex Fourier components Pn and the pluses 

on the left show the angles of the same components. 
 

Figure 1.4 Bode plots of the Magnitude and Angle of the Fourier Components 
that describe p(t) in Fig. 1.3 
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B. Summing sound pressures of different frequencies 
The rms value of p(t) in Figure 1.3 can also be computed from the magnitude spectrum by 

summing the ‘intensities’ of the spectral components of Figure 1.4 components and converting back 
to pressure. 
 

 Prms
2 ρ0c =

1
2

Pn
2 /ρ0c⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ∑  (1.20) 

 Prms =
1
2

Pn
2⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ∑   = 0.27 Pa 

 
As a simpler example, suppose we have two sound sources one of 1000 Hz and another of 1500 Hz 
that each produce tonal amplitudes of 2 Pa at some point Q, such that at Q: 
 p1(t) = 2cos 2π1000t( ), p2(t) = 2cos 2π1500t( ) 

The rms sound pressure when either source is active by itself is 1.41 Pa.   
What is the rms sound pressure when both sources are turned on? 
Since it is the intensity that adds: the total intensity is: 

 ITotal =
1
2

P1
2

z0
+

1
2

P2
2

z0
; PTotal = 2 z0 ITotal ; PTotal

rms = z0 ITotal ; (1.21) 

Or simply  PTotal = P1
2 + P2

2 , PTotal
rms = P1,rms

2 + P2,rms
2 = 2.0Pa. 

 
4. The Propagation of Sound in Time and Space:  The Wave Equation. 

A wave equation describes the variation of an acoustic variable in time and space.  The wave 
equations we will be using use the basic assumptions of linear acoustics (i.e. the sound-induced 
variations in p,T and ρ are small compared to P0,T0 and ρ0) and also assumes that air (and water) 
are inviscid (i.e. that sound propagation is primarily determined by the density and compressibility 
of the fluid and is not dependent on fluid viscosity). 
The one dimensional wave equation for sound pressure: 

 

∂2 p(x, t)
∂x2 =

ρ0
BA

∂2 p(x, t)
∂t2 , where ρ0

BA
=

1
c2 . (1.22) 

The derivation of the one dimensional wave equation for sound in a fluid includes: 

(i) An acoustic version of Newton’s second law 
∂p(x, t)

∂x
= −ρ0

∂vx (x, t)
∂t

 

(ii) an acoustic version of the conservation of mass: 

ρ0
∂vx (x, t)

∂x
= −

∂ρ(x,t)
∂t

 

(iii) a relationship between  compressibility and sound-induced changes in density and pressure: 

ρ x, t( ) = p x, t( ) ρ0
BA

. 
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Topic 2: The Equations of Linear Acoustics; Derivation of the wave equation 
Advanced Reading: Beranek Chapter 2; Kinsler et al. Chapter 2 
Another view: Fletcher, Chapter 6  
 
A. Define acoustic variables 

sound pressure: p(x,y,z,t) = pTotal (x,y,z,t) − P0 , 
particle velocity: v (x, y,z,t) = vx (x,y, z, t)i x + vy (...)i y + vz (...)i z , 
sound density: ρ(x,y,z, t) = ρTotal (x,y,z,t) − ρ0  and 
sound temperature: T(x,y,z,t) = TTotal (x,y,z,t) − T0  

 
B. The 'linear' assumption 
 The primary assumption of linear acoustics is that all variations in acoustic scalar quantities 
are small relative to the static equilibrium quantities, i.e. 

p(x,y,z, t) << P0; ρ(x,y, z, t) << ρ0; T(x,y, z, t) << T0  

 
C.  The 'inviscid' assumption 
 Another common simplifying assumption is that the viscosity of air is so small that we can 
consider the medium inviscid.  This assumption is generally valid except for tubes of very small 
cross-sectional area, when determining the 'Q' of a resonant acoustic system (which depends strongly 
on damping) or considering the propagation of sound over some large distances. 
 
D. Derivation of the one-dimensional wave equation 
 Assume a sound wave propagating in the x direction down a long rectangular duct of cross-
sectional area S (Figure 1.2.1), with a 'wave-front' orthogonal to the long axis.  Under these 
conditions, the sound pressure and particle velocity within any slice where x is  constant are 
invariant and we can describe the system in terms of variations in a single dimension: 

 p(x,y,z, t) ⇒ p(x, t) , and (1.2.1a) 
 v (x, y, z, t) ⇒ vx (x, t)i x + 0 × i y + 0 × i z ⇒ vx (x, t). (1.2.1b) 

x

y

z
(0 ,0 ,0)

x+²x

S=z y

 
Figure 1.2.1:  A long duct of height y, width z and undetermined length.  Our derivation of the wave 

equation is based on a section of duct described by the interval x  to x+∆x. 
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 In order to characterize the two unknowns p(x, t)  and vx (x,t)  , we need two constraining 
equations.  We use Newton's second law as one constraint and the conservation of mass together 
with the elastic properties of the medium for the second constraint.  
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1.  Constraint 1:  Newton's second law: 
 Consider a small section of the duct of length ∆x..  Newton's second law reads:  

 
Force = m dvx (t)

dt . (1.2.2) 

The net force acting on the air in the small section of the duct is:  

 
Force = S × Difference in pressure at x and ∆x( )

= S p(x,t) − p(x + Λx, t)( )
. (1.2.3) 

 
The right side of equation (1.2.2) can be described in terms of the volume of the section of duct 
(S∆x) and the total density of air, leading to: 

 S p(x,t) − p(x + ∆x, t( )= S∆xρTotal (x, t) dvx (x,t)
dt

  . (1.2.4a) 

Substituting ρTotal(x,t)=ρ0+ρ(x,t) into (1.2.4a) yields:  

 S p x,t( )− p x + ∆x,t( )( )= S∆x ρ0 + ρ x,t( )( )dvx x,t( )
dt

 (1.2.4b)  

Dividing each side of (1.2.4b) by the volume (S∆x), assuming ρ(x,t) << ρ0 and taking the limit as ∆x 
goes to zero, yields: 

 
∂p(x, t)

∂x
= −ρ0

dvx (x, t)
dt

 .  (1.2.5) 

The derivative on the right of (1.2.5) can be rewritten in terms of partial derivatives as 

 

dvx (x, t)
dt

= vx (x, t) ∂vx (x,t)
∂x

+
∂vx (x, t)

∂t ,   and  
since we assume vx(x,t) is small:  

 
dvx (x, t)

dt
≈

∂vx (x, t)
∂t

   . (1.2.6) 

The final result relates pressure and velocity via two first order differential equations, one in space 
and the other in time: 

 
∂p(x, t)

∂x
= −ρ0

∂vx (x,t)
∂t

.   (1.2.7) 

The acoustic version of F=ma!! 
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2. Constraint Two: 
a. The conservation of mass. 

 In a sound field we can also define a flux J  (the mass flowing per unit area per unit time) as 
the product of the total density and the particle velocity  
 J = ρTotalv . (1.2.8) 

(The units of flux are kg/m2/s). 
 

In the one dimensional system of Figure 1.2.1, we need only worry about the x component of the 
vectors J and v ; and we can rewrite (1.2.8) as:  
 Jx (x, t) = ρTotal (x, t)vx (x, t)   . (1.2.9) 
 
 According to the conservation of mass, the net flux into a volume (S∆x) during time ∆t must equal 
the change in mass defined by the product of the volume and the change in total density during time 
∆t:  
 Jx (x, t) − Jx (x + ∆x, t)( )∆t S = ρT (x, t + ∆t) − ρT (x, t)( )∆x S . (1.2.10) 
 
Dividing both sides of (1.2.10) by ∆x ∆t S, and taking the limit as both ∆x and ∆t go to zero yields;  
 ∂Jx (x, t)

∂x
= −

∂ρTotal (x, t)
∂t

. (1.2.11) 

Substituting (1.2.9) into (1.2.11) and noting that 
∂ρTotal

∂t
=

∂ρ
∂t

;gives us our final description of the 

conservation of mass or continuity equation for a one-dimensional linear acoustic system:  
 

 ρ0
∂vx (x, t)

∂x
= −

∂ρ(x, t)
∂t

  . (1.2.12) 

Given a ‘box’ of medium, the change in density as a function of time is proportional to the net 
velocity of particles entering and leaving the box. 
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b.  The elastic properties of the medium 
 In general the density of a gas (like air) depends on pressure.  For example, the Ideal Gas Law  
relates the total pressure pT and volume Vol of the gas to some physical constants, n the number of 
moles of the gas, R the universal gas constant and TTotal the absolute temperature: 
 pTotal(x,t) Vol=nRTTotal(x,t) . (1.2.13) 
The gas law can be rewritten in terms of density ρ: 

 pTotal = ρTotal
RTTotal

M
,   (1.2.14) 

where M is the molecular weight of the gas. 
 
 If TTotal were to remain constant (isothermal conditions) then the relationship between pTotal and 
ρTotal is especially simple, such that: 

 
pTotal

p0
=

ρTotal
ρ0

 . (1.2.15) 

However, the rapid changes of pressure associated with sound at most audible frequencies does not 
permit heat exchange either within the sound field or between the sound field and the environment.  
Therefore the relation between pTotal and ρTotal must be defined for circumstances of no heat flow 
(adiabatic conditions).  For an ideal gas under adiabatic conditions: 

 
pTotal

p0
=

ρTotal
ρ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ
 ,  (1.2.16) 

where γ is the ratio of specific heats and equals 1.41 for an ideal diatomic gas.  Equation 1.2.16 can 
be rewritten to include acoustic variables: 

 
p0 + p

p0
=

ρ0 + ρ
ρ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ
 or  p0 + p = p0

ρ0 + ρ
ρ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ
  . (1.2.17) 

 
A Taylor series expansion of the right side of (1.2.17) yields: 

 p0 + p = p0 + ρ ∂pTotal
∂ρTotal

+
ρ2

2
∂2 pTotal
∂ρ2

Total
+ ... (1.2.18) 

 
Since ρ is small the higher terms can be ignored, leaving  

 p(x, t) = ρ(x, t) ∂pTotal
∂ρTotal

= BA
ρ(x,t)

ρ0
   or   ρ(x, t) = p(x, t) ρ0

BA
 (1.2.19) 

where BA = ρ0
∂pTotal
∂ρTotal

.  For an ideal gas, BA = γ p0.  For a diatomic gas at 1 atmosphere of pressure 

BA=1.4x105 Pa. 
Directly from the gas law: P = n/V RT, or n/V = P/(RT). 
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3. Synthesis: 

Newtons 2nd Law: ∂p(x, t)
∂x

= −ρ0
∂vx (x, t)

∂t
   . (1.2.7) 

Conservation of Mass: ρ0
∂vx (x, t)

∂x
= −

∂ρ(x,t)
∂t

  . (1.2.12) 

Elasticity Relationship: ρ(x, t) = p(x, t) ρ0
ΒΑ

  . (1.2.19) 

Substituting 19 into 12 yields: 

 ∂vx (x,t)
∂x

= −
1

BA

∂p(x, t)
∂t

 . (1.2.20) 

 Equations (1.2.7) and (1.2.20) describe the partial derivatives of pressure and velocity with respect 
to x in terms of two equations, two properties of the media (ρ0 and Β) and two unknowns (the partial 
derivatives with respect to time).  Taking the partial of both sides of (1.2.7) with respect to x and 
substituting (1.2.20) into the result yields a one-dimensional "wave equation" in x and t, 

 ∂2 p(x, t)
∂x2 =

ρ0
BA

∂2 p(x, t)
∂t2 , where ρ0

BA
=

1
c2 . (1.2.21) 

One possible solution for (1.2.21) is in terms of two wave functions traveling in opposite directions: 

 p(x,t) = f + t − x /c( )+ f − t + x /c( )  , (1.2.22a) 

and vx (x, t) =
1
z0

f + t − x /c( )− f − t + x /c( )[ ]  , (1.2.22b) 

Things to note about 1.2.22 
1). z0 = BAρ0 = ρ0c , 
2). The wave functions f+ & f- are functions in time and space but the units to function 

argument is seconds. 
3.) In the forward traveling wave f+, for any t the argument (t-x/c) is smaller for larger xs. 
4.) In the backward traveling wave f- for any t the argument (t+x/c) is larger for larger xs. 
5.) While the scalar pressures produced by the two oppositely traveling waves add, the 

directional velocities are of opposite sign and subtract. 
6.) While the pressure and velocity components of each traveling wave are related by z0, 

the sum terms p(t,x)/vx(t,x) may not be.  
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