MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem Set No. 6 Fall Term 2006	6.630 Electromagnetics	_	Week 7 Week 8

Reading assignment: Section 2.1, 2.2; J. A. Kong, "Electromagnetic Wave Theory".

Problem P6.1

A break in a high-voltage DC power line occurs at z = 0 at time t = 0, as shown in Fig.1. The line was carrying a DC voltage V_o and DC current I_o before the break occurred. Assume that the tree is non-conducting.

- Fig. 1
- (a) Sketch I and V on the line at some time t after the break has occurred, but before any reflections from the source and load ends. The characteristic impedance of the line is Z_0 .
- (b) Consider a 600 kV line, carrying a power of 10^3 megawatts, with a characteristic impedance of $500\,\Omega$ (two-wire line). What is the peak voltage on the line after the break occurs?

Problem P6.2

A very long transmission line with characteristic impedance Z_0 and wave velocity v = c has a shunt resistor of unknown vlue R_L at an unknown location $z = \ell$. A measurement of the voltage at the input, $V_0(t)$, with a unit step generator applied to the line, yields the result shown in Fig. 2.

(a) What is ℓ ?

- (b) What is R_L ?
- (c) Sketch the voltage and current distribution on the line at the time $t = 1.5\ell/v$.