MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem Set No. 8 Fall Term 2006	6.630 Electromagnetics	Issued: Week 9 Due: Week 10

Reading assignment: Section 2.4, 2.6; J. A. Kong, "Electromagnetic Wave Theory".

Problem P8.1

A TEM transmission line is driven by a voltage source $V_o \cos \omega t$ at 100 MHz. The characteristic impedance of the transmission line is $Z_o = 100 \ \Omega$ for $\epsilon = \epsilon_o$. The transmission line length is $l = 75 \ \text{cm}$

(a) Let $\epsilon = \epsilon_o$, show that $l = \lambda/4$. If the voltage at z = -l is

$$V_1(t) = \frac{1}{\sqrt{2}} V_o \cos\left(\omega t - \frac{\pi}{4}\right),$$

what is the load impedance Z_L ?

(b) Let $\epsilon = 4\epsilon_o$, find the wavelength λ . What is the input impedance Z_{in} at z = -l? What is the voltage $V_1(t)$ at z = -l?

Problem P8.2

Convert the following time domain expressions into their complex equivalents in the frequency domain, where we have defined

$$A = \operatorname{Re} \left[\underline{A}e^{j\omega t}\right]$$

Example : $A = \sin \omega t \quad \underline{A} = -j$

(a) Find <u>A</u>. (b) Find A. (i) $A = 3\sin\left(\omega t - \frac{\pi}{4}\right)$ (ii) $A = \hat{x}\sin\omega t - \hat{y}2\cos\omega t$ (ii) $\underline{A} = \hat{x} + \hat{y}3j$ (iii) $\underline{A} = \cos\phi\cos\omega t$ (ii) $\underline{A} = A_0e^{j\phi} + j$

Problem P8.3

Consider the TEM transmission line system connected to a time-harmonic voltage source as shown in the following figure.

- (a) Find the impedance Z_A in terms of Z_o .
- (b) Find the impedance Z_B in terms of Z_o .
- (c) Find the impedance Z_C in terms of Z_o .
- (d) Show that the time average power dissipated in Z_C is $|V_o|^2/8Z_0$. Assume Z_o is real.
- (e) Find the voltage V_L across the load Z_L in terms of V_o and use V_L to calculate the time average power dissipated in the load Z_L in terms of V_o and Z_o . Assume Z_o is real.