MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem Set No. 9	6.630 Electromagnetics	Issued:	Week 10
Fall Term 2006		Due:	Week 11

Reading assignment: Section 2.6; J. A. Kong, "Electromagnetic Wave Theory".

Problem P9.1

Use the Smith chart to match the following load impedence, Z_L to the line impedance, $Z_o = 50\Omega$ by finding a suitable ℓ_1 and ℓ_2 .

(a)
$$Z_L = (100 + 25j)\Omega$$

(b)
$$Z_L = (100 - 25j)\Omega$$

(c)
$$Z_L = (25 + 50j)\Omega$$

(d) $Z_L = (25 - 50j)\Omega$

Problem P9.2

(a) Determine the propagation constant $\theta(\omega)$, for the lumped transmission line shown in following figure. Show that the result can be placed in the form

$$\sin^2\frac{\theta}{2} = \frac{\omega^2 - \omega_0^2}{\omega_1^2}$$

(b) For what range of ω will the line support a propagating wave, i.e., admit real θ solutions?

Problem P9.3

- (a) Determine the dispersion relation for the backward wave line shown in following figure. That is, assume $V_n = Ae^{-jn\theta}$, $I_n = Be^{-jn\theta}$ and determine $\theta(\omega)$. Sketch $\theta(\omega)$ for $\omega > \omega_0 = \frac{1}{2\sqrt{L_0C_0}}$. (b) For a since $V_n = V_n = V_n = V_n$.
- (b) For a given $\omega > \omega_0$, the result in part (a) yields two real real values of θ (excluding values which differ by $2n\pi$). Determine the impedance, $Z = \frac{V_n}{I_n}$, for each of these modes and show that the time-averaged power flow is in the direction opposite the phase velocity.
- (c) A voltage source $v_s(t) = V_s \sin \omega_0 t$ is connected to terminal pair a a'. Determine the steady-state $v_n(t)$.
- (d) Suppose the source connected to a a' is given by

$$v_s(t) = V_s \frac{\sin \omega_1 t}{\omega_1 t} \sin \omega_0 t$$

where $\omega_1 \ll \omega_0$. Determine $v_n(t)$.