
Study of EM waves in Periodic Structures

with addenda: “Study of EM waves in Periodic Structures (mathematical details)”

Massachusetts Institute of Technology

          6.635 lecture notes

1 Introduction

We will study here the distribution of electromagnetic fields in dielectric periodic media. The

main difference with the previous topic comes from the word “dielectric”. Obviously, even a 2D

periodic dielectric medium cannot be studied with the Green’s functions presented in a previous

lecture, since the Green’s function was for periodic metallic structures.

In this topic, we will study the EM fields in media where:

• The material is macroscopic and isotropic.

• Since the material is constituted of real dielectric, we suppose we work in a small enough

frequency band such that we can ignore the frequency dispersive behavior of ε.

• The dielectric are lossless, so that ε is purely real.

2 Wave equations

2.1 Wave equations for H̄

Starting from Maxwell’s equations and using a permittivity ε = ε(r̄), it is straightforward to

show that we can write the following equations:

∇×
[

1

ε(r̄)
∇× H̄(r̄)

]

=

(

ω

c

)2

H̄(r̄) , (1a)

∇ · H̄(r̄) = 0 . (1b)

In this approach, the strategy is therefore:

1. Find the modes of H̄(r̄).

2. Find those of Ē(r̄) by solving Maxwell’s equations.
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2 2.2 Wave equations for Ē

Note that we can rewrite Eq. (1a) as an eigenvalue problem:

Θ H̄(r̄) =

(

ω

c

)2

H̄(r̄) , (2)

where

Θ = ∇×
[

1

ε(r̄)
∇×

]

. (3)

Upon solving, we get the eigenvectors which correspond to the field patterns of the harmonic

modes, and the eigenvalues which are proportional to the squared frequencies of these modes.

Note that Θ is a linear operator and that it is Hermitian. The demonstration of the last

property is straightforward:

Define a scalar product < F̄ , Ḡ >=
∫

dr̄ F̄ ?(r̄) · Ḡ(r̄) and show that (by

integration by part for example): < F̄ ,ΘḠ >=< ΘF̄ , Ḡ >, which is the

definition of a Hermitian operator. The consequence of this property is of

course that Θ has real eigenvalues.

2.2 Wave equations for Ē

Another approach to get the fields would be of course to write the wave equation for Ē instead

of for H̄:

∇×∇× Ē(r̄) =

(

ω

c

)2

ε(r̄)Ē(r̄) . (4)

However, this system cannot be cast in a simple eigenvalue problem. Although it can still

be solved for, it is far more complicated to get accurate results since the operator we would have

to define would not be Hermitian. For this reason, this approach is in general avoided.

2.3 Bloch states

In a periodic medium, we know that the fields can be written as:

H̄k(r̄) = eik̄·r̄ūk(r̄), ūk(r̄ + R̄) = ūk(r̄) . (5)

Inserting into Eq. (2) yields:

(ik̄ +∇)×
[

1

ε(r̄)
(ik̄ +∇)× ūk(r̄)

]

=

(

ω(k̄)

c

)2

ūk(r̄) , (6)

so that the operator becomes:

Θ = (ik̄ +∇)×
[

1

ε(r̄)
(ik̄ +∇)×

]

(7)

Note that because ūk(r̄ + R̄) = ūk(r̄), the eigenvalue problem can be restricted to a small

zone in space, which would necessarily imply a discrete spectrum of eigenvalues. Therefore, we

expect a set of discrete modes for each k̄.
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3 Fundamentals of photonic crystals

We shall briefly explain some terminology here related essentially to solid state physics, but

which is of prime importance for the study of the structures we are dealing with here.

3.1 Direct lattice (some details are given in the “mathematical details” addenda)

A photonic crystal is a periodic structure (that we will take to be dielectric here) in 1D, 2D or

3D.

Any vector r̄′ in space can be written as

r̄′ = r̄ + R̄ , (8)

where R̄ is the translational vector in space defined by

R̄ = α1ā1 + α2ā2 + α3ā3 , (9)

where α1,2,3 ∈ {. . . ,−2,−1, 0, 1, 2, 3, . . .} and ā1, ā2 and ā3 are the lattice vectors.

From the lattice, we can construct the Wigner-Seitz cell as shown in Fig. 1.

Figure 1: Wigner-Seitz cell for an arbitrary position of points: the cell is constructed

by joining the center element to its closest neighbors and drawing perpendicular lines

from to the center of these segments. The polygon thus created is the smallest repeat-

able cell of the periodic lattice, and is defined as the Wigner-Seitz cell.

Note that there exist only one type of lattice for a 1D photonic crystal, five distinct types

for 2D photonic crystals (rectangular, square, hexagonal or triangle, centered rectangular and

oblique), and fourteen for 3D photonic crystals.

3.2 Reciprocal lattice (some details are given in the “mathematical details” addenda)

We will use here the same notation as [Joannopoulos, Meade, and Winn, “Photonic Crystals”]

and write the reciprocal translational vector as Ḡ:

Ḡ = β1b̄1 + β2b̄2 + β3b̄3 , (10)

where β1,2,3 ∈ {. . . ,−2,−1, 0, 1, 2, 3, . . .} and b̄1, b̄2 and b̄3 are the lattice vectors in the spectral

domain.

For the sake of illustration, Tab. 1 gives the definition of vectors ā and b̄ for square and

triangular lattices.



4 3.3 Bloch-Floquet theorem

Square lattice ā1 = ax̂ b̄1 = 2π/a x̂

ā2 = aŷ b̄2 = 2π/a ŷ

Triangular lattice ā1 = ax̂ b̄1 = 2π/a (x̂−
√
3/3 ŷ)

ā2 = (x̂+
√
3ŷ) b̄2 = 2π/a 2

√
3/3 ŷ

Table 1: Definition of ā and b̄ vectors for square and triangular (or hexagonal) lattice.

3.3 Bloch-Floquet theorem

From Bloch-Floquet theorem, we know that we can write the electric and magnetic fields as a

summation over reciprocal vectors Ḡ (see the “mathematical details” part of the notes). This

means that different k̄ do not necessarily correspond to different modes and that therefore there

is a redundancy in the label k̄: we can therefore reduce the study to what is called the first

Brillouin zone (which is the Wigner-Seitz cell in the reciprocal lattice). Some examples of

Brillouin zones are given in Fig. 2 and Fig. 3.
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Figure 2: Direct square lattice and corresponding reciprocal lattice with highlighted

Brillouin zone.
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Figure 3: Direct triangular (or hexagonal) lattice and corresponding reciprocal lattice

with highlighted Brillouin zone.

4 Bragg-like diffraction

The standard Bragg diffraction is illustrated in Fig. 4. Here, we will derive another diffraction

condition, equivalent to Bragg, and shall see that the diffraction is entirely governed by the

reciprocal vector Ḡ.
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Figure 4: Schematic representation of Bragg diffraction. Maximal diffraction occurs

at 2a sin θ = nλ where λ is the wavelength of the electromagnetic wave and n is an

integer.

Referring to Fig. 5, we can write the scattering amplitude in terms of the reflection coefficient

Γ at position r̄ times a phase factor.

PSfrag replacements

r̄

k̄
k̄′

O

Figure 5: Diffraction from an elementary volume of a periodic medium: k̄ is the

wavevector of the incident wave whereas k̄′ is the wavevector of the diffracted wave.

Upon integrating over the whole volume, we get:

F (k̄, k̄′) =

∫

Γ(r̄)ei(k̄−k̄′)·r̄dv . (11)

Since the medium is periodic, we can write:

Γ(r̄ + R̄) = Γ(r̄) =
∑

Ḡ

Γ̃(Ḡ)eiḠ·r̄ , (12)

such that

F (k̄, k̄′) =
∑

Ḡ

∫

Γ̃(Ḡ)ei(Ḡ−∆k̄)·r̄dv , (13)



6 Section 4. Bragg-like diffraction

where ∆k̄ = k̄′ − k̄. This amplitude is maximal when Ḡ−∆k̄ = 2mπ or, when m = 0,

Ḡ = ∆k̄. (14)

This is an important relation which, again, is a condition for maximal diffraction. Upon ex-

panding back in terms of k̄ and k̄′ and rising to the square, we write (noting that |k̄| = |k̄′| = k):

k2 = k2 + 2k̄ · Ḡ+G2 , (15)

or (taking −k̄ instead of k̄):

2k̄ · Ḡ = G2 . (16)

As an exercise, it is interesting to show that this condition is equivalent to the standard

Bragg diffraction.

Upon dividing both terms of Eq. (16) by 4, we eventually write

k̄ · (Ḡ
2
) = (

Ḡ

2
)2 . (17)

This last equation has a nice geometrical interpretation shown in Fig. 6 which shows that

the vectors k̄ that satisfy the maximum diffraction condition are actually those which lie on the

edge of the Brillouin zone.
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Figure 6: Graphical representation of Eq. (17): each vector k̄ (black vector) with its

tip on a dashed line (not all represented) will satisfy the equation. Graphically: all

those k̄ have the same projection on the generating vector Ḡ/2 (red vector).

Therefore:

The edge of the Brillouin zone plus its center (Ḡ = 0) satisfy the maximum

diffraction condition.

This condition can also be rewritten in terms of group velocity: for those k̄ which tip lie on

the edge of the Brillouin zone and k̄ = 0, the component of the group velocity normal to the
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Bragg diffraction planes tends to zero since the electromagnetic wave tends to be completely

reflected for these k̄:

vnormg (k̄ ∈ BZ tip) =

(

∇kω(k̄)

)norm

(k̄ ∈ BZ tip) → 0 . (18)

For the symmetry points, the diffracted wave is reflected in the direction of the incident wave so

that for these points, the total group velocity is zero. This can be directly seen on the dispersion

curves where, at the symmetry points of the crystal, the tangent to the curve is horizontal

(except possibly for those points corresponding to a zero frequency).

5 Mathematical details

Using all the principles shown before, we can construct the eigenvalue system for H̄ and then

solve for Ē. The detailed mathematical manipulations are given in the annex document “Study

of EM waves in Periodic Structures (mathematical details)”.

Note that to build the system, we need to evaluate the Fourier coefficients of the permittivity

(or the inverse of the permittivity, κ). We shall show how to get these coefficients for the case

of infinite dielectric rods εa of circular cross-section organized in a square lattice, embedded in

a background of εb. We therefore place ourselves in a 2D situation where the Ḡ vector will be

written Ḡρ to denote that it does not depend on z (and similarly R̄ will be noted R̄ρ).

As a reminder, we write the permittivity as:

ε(ρ) =
∑

Ḡρ

ε̃(Ḡρ)e
iḠρ·ρ, ε̃(Ḡρ) =

1

Ω

∫

Ω
ε(ρ)e−iḠρ·ρ , (19)

where Ω denotes the surface of the elementary cell.

The idea is to write the permittivity as

ε(ρ) = εb + (εa − εb)
∑

R̄ρ

S(Rc − |ρ− R̄ρ|) , (20)

where again the subscript ρ in R̄ρ denotes a dependency on x and y only, Rc is the radius of the

dielectric rods and S denotes the step function. Merging these two equations, we get:

ε̃(Ḡρ) =
1

Ω

∫

Ω

[

εb + (εa − εb)
∑

R̄ρ

S(Rc − |ρ− R̄ρ|)
]

e−iḠρ·ρdρ ,

=
1

Ω

∫

Ω
εbe

−iḠρ·ρdρ +
1

Ω

∫

Ω
(εa − εb)

∑

R̄ρ

S(Rc − |ρ− R̄ρ|)e−iḠρ·ρdρ . (21)

Let us call the first integral I1(Ḡρ) and the second integral I2(Ḡρ), and evaluate them separately.

Evaluation of I1(ρ)
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The first integral is easily evaluated as:

I1(Ḡρ) =







εb if Ḡρ = 0

0 elsewhere
(22)

Evaluation of I2(ρ)

For the second integral, we can make the change of variable ρ′ = ρ− R̄ρ. Since ρ spans the

whole domain Ω and R̄ρ is the translational vector, ρ′ spans the whole space. We can therefore

replace the sum of integrals over Ω by a single integral over the whole 2D space. We write then:

If Ḡρ = 0:

I2(Ḡρ) =
εa − εb

Ω

∫∫

dρ′S(Rc − |ρ− R̄ρ|) = (εa − εb)
πR2

c

Ω
= fr(εa − εb), (23)

where fr =
πR2

c

Ω is the fractional volume.

If Ḡρ 6= 0:

I2(Ḡρ) =
1

Ω
(εa − εb)

∫∫

∞

−∞

dρ′ S(Rc − |ρ− R̄ρ|) e−iḠρ·ρ′

=
εa − εb

Ω

∫ Rc

0
dρ′ρ′

∫ 2π

0
dφe−iGρρ

′ cos(φ−θ)

=
εa − εb

Ω
2π

∫ Rc

0
dρ′ρ′J0(ρ

′Gρ), (24)

where we have used the change of variable (now standard) x′ = ρ′ sinφ, y′ = ρ′ cosφ,

Gx = Gρ sin θ, Gy = Gρ cos θ, and the well-known identity for the Bessel function. Upon

using
∫

xJ0(αx)dx = x/α J1(αx), we continue with

I2(Ḡρ) =
2π

Ω
(εa − εb)

[

ρ′

Gρ
J1(Gρρ

′)

]Rc

0

= fr(εa − εb)
2J1(GρRc)

GρRc
. (25)

This lead to the final result that:

ε̃(Gρ) =







εafr + εb(1− fr) if Gρ = 0

(εa − εb)fr
2J1(GρRc)
GρRc

elsewhere.
(26)

The reconstruction of the permittivity is then straightforward, and examples of two lattice

are given in Fig. 7.
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(a) Side view.

(b) Top view.

Figure 7: Reconstruction of the permittivity for cylindrical rods in a square lattice

εa = 10, εb = 1, Rc/a = 0.2 (yielding a fractional volume fr = 12.5%).
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6 Dispersion curves

At this point, we have everything to build the eigensystem (34) given in the additional document

“Study of EM waves in periodic structures (mathematical details)”. Solving it gives a set of

eigenvalues that are directly related to the dispersion curve of the material. An example is given

in Fig. 8.
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Figure 8: Dispersion diagram for the photonic crystal of Fig. 7.


