MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776

High Speed Communication Circuits Lecture 1 Communication Systems Overview

Profs. Hae-Seung Lee and Michael H. Perrott Massachusetts Institute of Technology February 1, 2005

Copyright © 2005 by H.-S. Lee and M. H. Perrott

Modulation Techniques

- Amplitude Modulation (AM)
 - -Standard AM
 - -Double-sideband (DSB)
 - -Single-sideband (SSB)
 - -Quadrature Amplitude Modulation (QAM)
- Constant Envelope Modulation
 - -Phase Modulation (PM)
 - -Frequency Modulation (FM)
- Multiple Access
 - -FDMA
 - -TDMA
 - -CDMA
- Ultra Wide Band (UWB)
 - -Pulse
 - -OFDM

Amplitude Modulation (Transmitter)

- Vary the amplitude of a sine wave at carrier frequency f_o according to a baseband modulation signal x'(t) = 1 + mx(t)
- DC component of baseband modulation signal influences transmit signal and receiver possibilities
 - DC value greater than signal amplitude shown above
 - Allows simple envelope detector for receiver
 - Strong carrier frequency tone is transmitted(wasted power)

Frequency Domain View of Standard AM Transmitter

Baseband signal x'(t) has a nonzero DC component

- Causes impulse to appear at DC in baseband signal
 - Transmitter output has an impulse at the carrier frequency
 - This component is fixed in frequency and phase, so carries no information (waste of transmit power)

Zero DC Value (DSB or 'Suppressed Carrier')

- Envelope of modulated sine wave no longer corresponds directly to the baseband signal
 - Envelope instead follows the absolute value of the baseband waveform, negative value of the baseband input produces 180° phase shift in carrier
 - Envelope detector can no longer be used for receiver
- The carrier frequency tone that carries no information is removed: less transmit power required for same transmitter SNR (compared to standard AM)

H.-S. Lee & M.H. Perrott

DSB Spectra

- Impulse in DC portion of baseband signal is now gone
 - Transmitter output now is now free from having an impulse at the carrier frequency: more *power* efficient

Accompanying Receiver (Coherent Detection)

 $z(t) = 4x(t)\cos(2\pi f_0 t)\cos(2\pi f_0 t) = 2x(t)(1 + \cos(2\pi f_0 t))$

- Works regardless of DC value of baseband signal
- Requires receiver local oscillator to be accurately aligned in phase and frequency to carrier

Frequency Domain View of DSB Receiver (Coherent)

H.-S. Lee & M.H. Perrott

Impact of Phase Misalignment in Receiver Local Oscillator

 $z(t) = 4x(t)cos(2\pi f_o t)sin(2\pi f_o t) = 2x(t)sin(2\pi f_o t)$

Worst case is when receiver LO and carrier frequency are phase shifted 90 degrees with respect to each other

Desired baseband signal is not recovered

Impact of 90 Degree Phase Misalignment (Freq. Domain View)

H.-S. Lee & M.H. Perrott

SSB (Single-Sideband)

- The upper sideband (USB) and the lower sideband (LSB) are symmetric, so they contain the same information
- Standard AM is neither power efficient nor bandwidth efficient
- The DSB improves power efficiency, but still takes up twice the necessary bandwidth
- Most baseband signals have no DC or very low frequency components
- One of the sidebands can be removed at the IF or RF stage (much easier to filter in the IF stage)

SSB Spectra

- One of the sidebands is removed by sideband filter or phase shift techniues
 - Signal bandwidth is reduced 2x: more bandwidth efficient

Quadrature Modulation (QAM)

- Takes advantage of coherent receiver's sensitivity to phase alignment with transmitter local oscillator
 - We essentially have two orthogonal transmission channels (I and Q) available
 - Transmit two independent baseband signals (I and Q) onto two sine waves in quadrature at transmitter

H.-S. Lee & M.H. Perrott

Accompanying Receiver

Demodulate using two sine waves in quadrature at receiver

- Must align receiver LO signals in frequency and phase to transmitter LO signals
 - Proper alignment allows I and Q signals to be recovered as shown

Impact of 90 Degree Phase Misalignment

- I and Q channels are swapped at receiver if its LO signal is 90 degrees out of phase with transmitter
 - However, no information is lost!
 - Can use baseband signal processing to extract I/Q signals despite phase offset between transmitter and receiver

Simplified View

- For discussion to follow, assume that
 - Transmitter and receiver phases are aligned
 - Lowpass filters in receiver are ideal
 - Transmit and receive I/Q signals are the same except for scale factor
- In reality
 - RF channel adds distortion, causes fading
 - Signal processing in baseband DSP used to correct problems

H.-S. Lee & M.H. Perrott

Analog Modulation

- I/Q signals take on a continuous range of values (as viewed in the time domain)
- Used for AM/FM radios, television (non-HDTV), and the first cell phones
- Newer systems typically employ digital modulation instead

Digital Modulation

- I/Q signals take on discrete values at discrete time instants corresponding to digital data
 - Receiver samples I/Q channels
 - Uses decision boundaries to evaluate value of data at each time instant
- I/Q signals may be binary or multi-bit
 - Multi-bit shown above

Advantages of Digital Modulation

- Allows information to be "packetized"
 - Can compress information in time and efficiently send as packets through network
 - In contrast, analog modulation requires connections that are continuously available
 - Inefficient use of radio channel if there is "dead time" in information flow
- Allows error correction to be achieved
 - Less sensitivity to radio channel imperfections
- Enables compression of information
 - More efficient use of channel
- Supports a wide variety of information content
 - Voice, text and email messages, video can all be represented as digital bit streams

Constellation Diagram of Multi-bit Quadrature Digital Modulation (2-bit example)

- We can view I/Q values at sample instants on a twodimensional coordinate system
- Decision boundaries mark up regions corresponding to different data values
- Gray coding used to minimize number of bit errors that occur if wrong decision is made due to noise H.-S. Lee & M.H. Perrott

Impact of Noise on Constellation Diagram

- Sampled data values no longer land in exact same location across all sample instants
- Decision boundaries remain fixed
- Significant noise causes bit errors to be made (channel SNR determines maximum number of bits)

H.-S. Lee & M.H. Perrott

Constant Envelope Modulation

H.-S. Lee & M.H. Perrott

The Issue of Power Efficiency

Power amp dominates power consumption for many wireless systems

Linear power amps more power consuming than nonlinear ones

Constant-envelope modulation allows nonlinear power amp

Lower power consumption possible

H.-S. Lee & M.H. Perrott

Simplified Implementation for Constant-Envelope

- Constant-envelope modulation limited to phase and frequency modulation methods
- Can achieve both phase and frequency modulation with ideal VCO
 - Use as model for analysis purposes

Note: phase modulation nearly impossible with practical VCO *H.-S. Lee & M.H. Perrott MIT OCW*

Example Constellation Diagram for Phase Modulation

- I/Q signals must always combine such that amplitude remains constant
 - Limits constellation points to a circle in I/Q plane
 - Draw decision boundaries about different phase regions

Transitioning Between Constellation Points

- Constant-envelope requirement forces transitions to allows occur along circle that constellation points sit on
 - I/Q filtering cannot be done independently!
 - Significantly impacts output spectrum

Multiple Access Techniques

H.-S. Lee & M.H. Perrott

The Issue of Multiple Access

- Want to allow communication between many different users
- Freespace spectrum is a shared resource
 - Must be partitioned between users
- Can partition in either time, frequency, or through "orthogonal coding" (or nearly orthogonal coding) of data signals

Frequency-Division Multiple Access (FDMA)

- Place users into different frequency channels
- Two different methods of dealing with transmit/receive of a given user
 - Frequency-division duplexing
 - Time-division duplexing

Frequency-Division Duplexing (Full-duplex)

- Separate frequency channels into transmit and receive bands
- Allows simultaneous transmission and reception
 - Isolation of receiver from transmitter achieved with duplexer
 - Cannot communicate directly between users, only between handsets and base station
- Advantage: isolates users
- Disadvantages:

-duplexer has high insertion loss (i.e. attenuates signals passing through it)

-takes up twice the bandwidth

Time-Division Duplexing (Half-duplex)

- Use any desired frequency channel for transmitter and receiver
- Send transmit and receive signals at different times
- Allows communication directly between users (not necessarily desirable)
- Advantage: switch has low insertion loss relative to duplexer
- Disadvantage: receiver more sensitive to transmitted signals from other users

Time-Division Multiple Access (TDMA)

- Place users into different time slots
 - A given time slot repeats according to time frame period
- Often combined with FDMA
 - Allows many users to occupy the same frequency channel

Channel Partitioning Using (Nearly) "Orthogonal Coding"

Consider two correlation cases

- Two independent random Bernoulli sequences
 - Result is a random Bernoulli sequence
- Same Bernoulli sequence

Result is 1 or -1, depending on relative polarity H.-S. Lee & M.H. Perrott

Code-Division Multiple Access (CDMA)

- Assign a unique code sequence to each transmitter
- Data values are encoded in transmitter output stream by varying the polarity of the transmitter code sequence
 - Each pulse in data sequence has period T_d
 - Individual pulses represent binary data values
 - Each pulse in code sequence has period T_c
 - Individual pulses are called "chips"

Receiver Selects Desired Transmitter Through Its Code

- Receiver correlates its input with desired transmitter code
 - Data from desired transmitter restored
 - Data from other transmitter(s) remains randomized

H.-S. Lee & M.H. Perrott

Frequency Domain View of Chip Vs Data Sequences

Data and chip sequences operate on different time scales

Associated spectra have different width and height

H.-S. Lee & M.H. Perrott

Frequency Domain View of CDMA

- CDMA transmitters broaden data spectra by encoding it onto chip sequences ('spread-spectrum')
- CDMA receiver correlates with desired transmitter code
 - Spectra of desired channel reverts to its original width
 - Spectra of undesired channel remains broad
 - Can be "mostly" filtered out by lowpass

UWB (Ultra-Wideband)

- Extreme case of spread-spectrum communication
- Takes advantage of Shannon's theorem :

-data rate goes up proportionally to bandwidth but degrades only logarithmically with SNR.

Very low energy emission per Hz

Pictures Courtesy of R. Blazquez, et. al.

UWB Standards

FCC recently allowed 3.1-10.6 GHz for UWB

Two separate IEEE standards are under development

Pictures Courtesy of R. Blazquez, et. al. H.-S. Lee & M.H. Perrott

UWB Approaches

Pulsed UWB OFDM UWB

Pulsed UWB: Marconi invented it! It's a form of TDMA

OFDM UWB: Utilizes knowledge base of narrowband systems. Strong jammers can be avoided.

Pictures Courtesy of F. R. Lee, et. al.

Pulsed UWB

- Data encoded in impulse train
- Multipath can be exploited
- No narrowband filters (RF or baseband) needed in tranceivers
- Extremely tight time-synchronization is essential

Pictures Courtesy of R. Blazquez, et. al. H.-S. Lee & M.H. Perrott

OFDM UWB

- Can take advantage of wealth of knowledge in narrowband communication
- Involves the usual blocks of narrowband systems filters, LNA's etc.
- Bandwidth of each channel is much wider: filtering is easier than narrowband systems
- SNR requirement in each channel is much lower than narrowband systems
- More digital processing than pulsed OFDM
- Strong jammers can be avoided