MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

Michael Perrott Massachusetts Institute of Technology March 8, 2005

Copyright © 2005 by Michael H. Perrott

Notation for Mean, Variance, and Correlation

- Consider random variables x and y with probability density functions f_x(x) and f_y(y) and joint probability function f_{xy}(x,y)
 - Expected value (mean) of x is

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x f_x(x) dx$$

- Note: we will often abuse notation and denote \overline{x} as a random variable (i.e., noise) rather than its mean

The variance of x (assuming it has zero mean) is

$$\overline{x^2} = E(x^*x) = \int_{-\infty}^{\infty} x^* x f_x(x) dx$$

A useful statistic is

$$\overline{xy} = E(xy) = \int_{-\infty}^{\infty} xy f_{xy}(x, y) dx dy$$

If the above is zero, x and y are said to be uncorrelated
 H.-S. Lee & M.H. Perrott

Relationship Between Variance and Spectral Density

- One-sided spectrum defined over positive frequencies
 - Magnitude defined as twice that of its corresponding two-sided spectrum
- In the next few lectures, we assume a one-sided spectrum for all noise analysis

H.-S. Lee & M.H. Perrott

The Impact of Filtering on Spectral Density

For the random signal passing through a linear, time-invariant system with transfer function H(f)

$$S_y(f) = |H(f)|^2 S_x(f)$$

We see that if x(t) is amplified by gain A, we have

$$S_y(f) = A^2 S_x(f) \Rightarrow \overline{y^2} = A^2 \overline{x^2}$$

H.-S. Lee & M.H. Perrott

Can be described in terms of either voltage or current

k is Boltzmann's constant

$$k = 1.38 \times 10^{-23} J/K$$

- T is temperature (in Kelvins)
 - Usually assume room temperature of 27 degrees Celsius

$$\Rightarrow T = 300K$$

H.-S. Lee & M.H. Perrott

Noise In Inductors and Capacitors

Ideal capacitors and inductors have no noise!

- In practice, however, they will have parasitic resistance
 - Induces noise
 - Parameterized by adding resistances in parallel/series with inductor/capacitor
 - Include parasitic resistor noise sources

Noise in CMOS Transistors (Assumed in Saturation)

Transistor Noise Sources

Drain Noise (Thermal and 1/f)

Gate Noise (Induced and Routing Parasitic)

Modeling of noise in transistors must include several noise sources

- Drain noise
 - Thermal and 1/f influenced by transistor size and bias
- Gate noise
 - Induced from channel influenced by transistor size and bias
 - Caused by routing resistance to gate (including resistance of polysilicon gate)
 - Can be made negligible with proper layout such as fingering of devices

H.-S. Lee & M.H. Perrott

Drain Noise – Thermal (Assume Device in Saturation)

H.-S. Lee & M.H. Perrott

Drain Noise – 1/f (Assume Device in Saturation)

MIT OCW

H.-S. Lee & M.H. Perrott

Induced Gate Noise (Assume Device in Saturation)

Useful References on MOSFET Noise

Thermal Noise

B. Wang et. al., "MOSFET Thermal Noise Modeling for Analog Integrated Circuits", JSSC, July 1994

Gate Noise

- Jung-Suk Goo, "High Frequency Noise in CMOS Low Noise Amplifiers", PhD Thesis, Stanford University, August 2001
 - http://www-tcad.stanford.edu/tcad/pubs/theses/goo.pdf
- Jung-Suk Goo et. al., "The Equivalence of van der Ziel and BSIM4 Models in Modeling the Induced Gate Noise of MOSFETS", IEDM 2000, 35.2.1-35.2.4
- Todd Sepke, "Investigation of Noise Sources in Scaled CMOS Field-Effect Transistors", MS Thesis, MIT, June 2002

Drain-Source Conductance: g_{do}

- g_{do} is defined as channel resistance with V_{ds}=0
 - Transistor in triode, so that

$$I_d = \mu_n C_{ox} \frac{W}{L} \left((V_{gs} - V_T) V_{ds} - \frac{V_{ds}^2}{2} \right)$$

$$\Rightarrow \left| g_{do} = \frac{dI_d}{dV_{ds}} \right|_{V_{ds}=0} = \mu_n C_{ox} \frac{W}{L} (V_{gs} - V_T)$$

- Equals g_m for long channel devices
- Key parameters for 0.18μ NMOS devices

$$\mu_n = 327.4 \text{ cm}^2 / (V \cdot s)$$

$$t_{ox} = 4.1 \times 10^{-9} \text{ m} \quad \epsilon_o = 3.9(8.85 \times 10^{-12}) \text{ F/m}$$

$$\Rightarrow \mu_n C_{ox} = \mu_n \frac{\epsilon_o}{t_{ox}} = 275.6 \times 10^{-6} \text{ F/}(V \cdot s)$$

$$V_T = 0.48 \text{ V}$$

H.-S. Lee & M.H. Perrott

Plot of g_m and g_{do} versus V_{gs} for 0.18 μ NMOS Device

Plot of g_m and g_{do} versus I_{dens} for 0.18 μ NMOS Device

Noise Sources in a CMOS Amplifier

 $\begin{array}{l} \overline{e_{nG}}, \ \overline{e_{nD}}, \ \overline{e_{ndeg}}: & \text{noise sources of external resistors} \\ R_{gpar}, \ \overline{e_{ngpar}}: & \text{parasitic gate resistance and its noise} \\ \overline{i_{ng}}: & \text{induced gate noise,} \\ g_g: & \text{caused by distributed nature of channel} \left(g_g = \frac{w^2 C_{gs}^2}{5g_{d0}}\right) \end{array}$

H.-S. Lee & M.H. Perrott

Remove Model Components for Simplicity

 $R_{gpar}, \overline{e_{ngpar}}$: can make negligible with proper layout g_g : assume to be neglible (for $w \ll w_t$) $C_{sb}, C_{gd}, C_{db}, g_{mb}$: too painful to include for calculations r_o : impact is minor since R_D is small (for high bandwidth) **H.-S. Lee & M.H. Perrott**

Key Noise Sources for Noise Analysis

H.-S. Lee & M.H. Perrott

Apply Thevenin Techniques to Simplify Noise Analysis

Assumption: noise independent of load resistor on drain

H.-S. Lee & M.H. Perrott

Calculation of Equivalent Output Noise for Each Case

H.-S. Lee & M.H. Perrott

Calculation of Z_{gs}

Calculation of η

(1)
$$i_{out} = i_{test} + g_m v_{gs}$$
 (2) $v_{gs} = -v_1 \frac{1/(sC_{gs})}{1/(sC_{gs}) + Z_g}$
(3) $v_1 = i_{out}(Z_{deg}||(\frac{1}{sC_{gs}} + Z_g))|$
After much algebra:
 $\eta = \frac{i_{out}}{i_{test}} = \left[1 - \left(\frac{g_m Z_{deg}}{Z_{deg} + Z_g}\right)Z_{gs}\right]$

H.-S. Lee & M.H. Perrott

Calculation of Output Current Noise Variance (Power)

To find noise variance:

$$i_{ndg}^2 = \overline{i_{ndg}^* i_{ndg}} = \overline{(\eta^* i_{nd}^* + g_m Z_{gs}^* i_{ng}^*)(\eta i_{nd} + g_m Z_{gs} i_{ng})}$$

H.-S. Lee & M.H. Perrott

Variance (i.e., Power) Calc. for Output Current Noise

Noise variance calculation

$$\overline{i_{ndg}^2} = |\eta|^2 \overline{i_{nd}i_{nd}^*} + \overline{i_{nd}^* i_{ng}} g_m \eta^* Z_{gs} + \overline{i_{nd}i_{ng}^*} (g_m \eta Z_{gs})^* + \overline{i_{ng}i_{ng}^*} |g_m Z_{gs}|^2$$

$$= |\eta|^2 \overline{i_{nd}^2} + 2Re\{\overline{i_{nd}^* i_{ng}}g_m \eta^* Z_{gs}\} + \overline{i_{ng}^2}|g_m Z_{gs}|^2$$

$$= |\eta|^2 \overline{i_{nd}^2} + 2Re\{\frac{\overline{i_{nd}^* i_{ng}}}{\sqrt{\overline{i_{nd}^2} \,\overline{i_{ng}^2}}} \sqrt{\overline{i_{nd}^2} \,\overline{i_{ng}^2}} g_m \eta^* Z_{gs}\} + \overline{i_{ng}^2} |g_m Z_{gs}|^2$$

Define correlation coefficient c between i_{ng} and i_{nd}

$$c = \frac{\overline{i_{nd}^* i_{ng}}}{\sqrt{\overline{i_{nd}^2} \,\overline{i_{ng}^2}}} \Rightarrow \overline{i_{ndg}^2} = |\eta|^2 \overline{i_{nd}^2} + 2Re\{c\sqrt{\overline{i_{nd}^2} \,\overline{i_{ng}^2}}g_m \eta^* Z_{gs}\} + \overline{i_{ng}^2}|g_m Z_{gs}|^2$$

$$\overline{i_{ndg}^2} = \overline{i_{nd}^2} \left(|\eta|^2 + 2Re\left\{c\sqrt{\frac{\overline{i_{ng}^2}}{\overline{i_{nd}^2}}}g_m \eta^* Z_{gs}\right\} + \frac{\overline{i_{ng}^2}}{\overline{i_{nd}^2}}g_m^2|Z_{gs}|^2\right)$$

MIT OC

H.-S. Lee & M.H. Perrott

Parameterized Expression for Output Noise Variance

Key equation from last slide

$$\overline{i_{ndg}^2} = \overline{i_{nd}^2} \left(|\eta|^2 + 2Re \left\{ c_{\sqrt{\frac{\overline{i_{ng}^2}}{\overline{i_{nd}^2}}}} g_m \eta^* Z_{gs} \right\} + \frac{\overline{i_{ng}^2}}{\overline{i_{nd}^2}} g_m^2 |Z_{gs}|^2 \right)$$

Solve for noise ratio

$$\sqrt{\frac{\overline{i_{ng}^2}}{\overline{i_{nd}^2}}}g_m = g_m \sqrt{\frac{4kT\delta(wC_{gs})^2/(5g_{do})}{4kT\gamma g_{do}}} = \frac{g_m}{g_{do}} \sqrt{\frac{\delta}{5\gamma}} (wC_{gs})$$

Define parameters Z_{gsw} and χ_d

$$Z_{gsw} = wC_{gs}Z_{gs}, \quad \chi_d = \frac{g_m}{g_{do}} \sqrt{\frac{\delta}{5\gamma}}$$

$$\Rightarrow \overline{i_{ndg}^2} = \overline{i_{nd}^2} \left(|\eta|^2 + 2Re \left\{ c\chi_d \eta^* Z_{gsw} \right\} + \chi_d^2 |Z_{gsw}|^2 \right)$$

H.-S. Lee & M.H. Perrott

Small Signal Model for Noise Calculations

H.-S. Lee & M.H. Perrott

Example: Output Current Noise with $Z_s = R_s$, $Z_{deg} = 0$

- Step 1: Determine key noise parameters
 - For 0.18μ CMOS, we will assume the following

$$c = -j0.55$$
, $\gamma = 3$, $\delta = 2\gamma = 6$, $\frac{g_m}{g_{do}} = \frac{1}{2} \Rightarrow \chi_d = 0.32$

Step 2: calculate η and Z_{asw}

$$\eta = 1, \quad Z_{gsw} = wC_{gs} \left(R_s || \frac{1}{jwC_{gs}} \right) = \frac{wC_{gs}R_s}{1 + jwC_{gs}R_s}$$

H.-S. Lee & M.H. Perrott

Calculation of Output Current Noise (continued)

Step 3: Plug values into the previously derived expression

$$\frac{\overline{i_{ndg}^2}}{\Delta f} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(\frac{1 + 2Re \left\{ -j|c|\chi_d Z_{gsw} \right\} + \chi_d^2 |Z_{gsw}|^2 \right)}{\text{Drain Noise Multiplying Factor}}$$
$$Z_{gsw} = wC_{gs} \left(R_s || \frac{1}{jwC_{gs}} \right) = \frac{wC_{gs}R_s}{1 + jwC_{gs}R_s}$$

For w << 1/(R_sC_{gs}):

$$Z_{gsw} \approx wC_{gs}R_s \quad \Rightarrow \quad \frac{\overline{i_{ndg}^2}}{\Delta f} \approx \frac{\overline{i_{ndg}^2}}{\Delta f} \left(1 + \chi_d^2 (wC_{gs}R_s)^2\right)$$

Gate noise contribution

H.-S. Lee & M.H. Perrott

Calculation of Output Current Noise (continued)

Step 3: Plug values into the previously derived expression

$$\overline{\frac{i_{ndg}^2}{\Delta f}} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(\frac{1 + 2Re \left\{ -j|c|\chi_d Z_{gsw} \right\} + \chi_d^2 |Z_{gsw}|^2}{\text{Drain Noise Multiplying Factor}} \right)$$
$$Z_{gsw} = wC_{gs} \left(R_s || \frac{1}{jwC_{gs}} \right) = \frac{wC_{gs}R_s}{1 + jwC_{gs}R_s}$$

For w >> 1/(R_sC_{gs}):

$$Z_{gsw} \approx 1/j \qquad \Rightarrow \quad \frac{\overline{i_{ndg}^2}}{\Delta f} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(1 - \frac{2|c|\chi_d + \chi_d^2}{\Delta f}\right)$$

Gate noise contribution

H.-S. Lee & M.H. Perrott

Plot of Drain Noise Multiplying Factor (0.18 µ NMOS)

Conclusion: gate noise has little effect on common source amp when source impedance is purely resistive! H.-S. Lee & M.H. Perrott

Broadband Amplifier Design Considerations for Noise

- Drain thermal noise is the chief issue of concern when designing amplifiers with > 1 GHz bandwidth
 - 1/f noise corner is usually less than 1 MHz
 - Gate noise contribution only has influence at high frequencies
- Noise performance specification is usually given in terms of input referred voltage noise H.-S. Lee & M.H. Perrott

Narrowband Amplifier Noise Requirements

- Here we focus on a narrowband of operation
 - Don't care about noise outside that band since it will be filtered out
- Gate noise is a significant issue here
 - Using reactive elements in the source dramatically impacts the influence of gate noise

Specification usually given in terms of Noise Figure *H.-S. Lee & M.H. Perrott MIT OCW*

The Impact of Gate Noise with $Z_s = R_s + sL_a$

Step 1: Determine key noise parameters

For 0.18µ CMOS, again assume the following

$$c = -j0.55, \quad \gamma = 3, \quad \delta = 2\gamma = 6, \quad \frac{g_m}{g_{do}} = \frac{1}{2} \Rightarrow \chi_d = 0.32$$

Step 2: Note that η =1, calculate Z_{gsw}

$$Z_{gsw} = wC_{gs} \left((R_s + jwL_g) || \frac{1}{jwC_{gs}} \right) = \frac{wC_{gs}(R_s + jwL_g)}{1 - w^2L_gC_{gs} + jwC_{gs}R_s}$$

H.-S. Lee & M.H. Perrott

Evaluate Z_{gsw} At Resonance

Set L_g such that it resonates with C_{gs} at the center frequency (w_o) of the narrow band of interest

$$\Rightarrow \frac{1}{\sqrt{L_g C_{gs}}} = w_o \qquad \text{Note: } Q = \frac{1}{w_o C_{gs} R_s} = \frac{w_o L_g}{R_s}$$

Calculate Z_{gsw} at frequency w_o

$$Z_{gsw} = \frac{w_o C_{gs}(R_s + jw_o L_g)}{1 - w_o^2 L_g C_{gs} + jw_o C_{gs} R_s} = w_o C_{gs}(Q^2 R_s - j\sqrt{L_g/C_{gs}})$$

H.-S. Lee & M.H. Perrott
$$= Q - j$$
 MIT OCV

The Impact of Gate Noise with $Z_s = R_s + sL_g$ (Cont.)

Key noise expression derived earlier

$$\frac{\overline{i_{ndg}^2}}{\Delta f} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(1 + 2Re \left\{-j|c|\chi_d Z_{gsw}\right\} + \chi_d^2 |Z_{gsw}|^2\right)$$

Substitute in for Z_{gsw}

$$2Re \{-j|c|\chi_d Z_{gsw}\} = 2Re \{-j|c|\chi_d (Q-j)\} = -2|c|\chi_d$$

$$\chi_d^2 |Z_{gsw}|^2 = \chi_d^2 |Q - j|^2 = \chi_d^2 (Q^2 + 1)$$

$$\Rightarrow \quad \frac{\overline{i_{ndg}^2}}{\Delta f} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(1 - 2|c|\chi_d + \chi_d^2(Q^2 + 1) \right)$$

Gate noise contribution

Gate noise contribution is a function of Q!

Rises monotonically with Q

H.-S. Lee & M.H. Perrott

At What Value of Q Does Gate Noise Exceed Drain Noise?

Determine crossover point for Q value

$$\begin{aligned} \overline{i_{ndg}^2} &= \frac{\overline{i_{nd}^2}}{\Delta f} \left(1 - 2|c|\chi_d + \chi_d^2(Q^2 + 1) \right) = \frac{\overline{i_{nd}^2}}{\Delta f} \, 1 \\ \Rightarrow Q &= \sqrt{1/\chi_d^2 - 1 + 2|c|/\chi_d} \quad (= 3.5 \text{ for } 0.18\mu \text{ specs}) \end{aligned}$$

Critical Q value for crossover is primarily set by process H.-S. Lee & M.H. Perrott

Calculation of the Signal Spectrum at the Output

At resonance:

$$i_{out,sig} = g_m v_{gs} = g_m \frac{1}{jw_o R_s C_{gs}} v_{in} = g_m (-jQ) v_{in}$$

Spectral density of signal at output at resonant frequency

$$S_{iout,sig}(f) = |g_m(-jQ)|^2 S_{in}(f) = (g_mQ)^2 S_{in}(f)$$

H.-S. Lee & M.H. Perrott

Impact of Q on SNR (Ignoring R_s Noise)

SNR (assume constant spectra, ignore noise from R_s):

$$SNR_{out} = \frac{S_{iout,sig}(f)}{S_{iout,noise}(f)} \approx \frac{(g_m Q)^2 S_{in}(f)}{\overline{i_{ndg}^2}/\Delta f}$$

- For small Q such that gate noise < drain noise</p>
 - SNR_{out} improves dramatically as Q is increased
- For large Q such that gate noise > drain noise
 - SNR_{out} improves very little as Q is increased

H.-S. Lee & M.H. Perrott

Noise Factor and Noise Figure

Noise Figure = $10 \log(Noise Factor)$

Calculation of SNR_{in} and SNR_{out}

$$SNR_{in} = \frac{|\alpha|^2 v_{in}^2}{|\alpha|^2 \overline{e_{nRs}^2}} = \frac{v_{in}^2}{\overline{e_{nRs}^2}} \quad \text{where } \alpha = \frac{Z_{in}}{R_s + Z_{in}}$$
$$SNR_{out} = \frac{|\alpha|^2 |G_m|^2 v_{in}^2}{|\alpha|^2 |G_m|^2 \overline{e_{nRs}^2} + \overline{i_{nout}^2}} \quad \text{where } G_m = \frac{i_{out}}{v_x}$$

H.-S. Lee & M.H. Perrott

Calculate Noise Factor (Part 1)

H.-S. Lee & M.H. Perrott

Calculate Noise Factor (Part 2)

$$SNR_{out} = \frac{|g_m Q|^2 S_{in}(f)}{\overline{i_{ndg}^2} / \Delta f + (g_m Q)^2 4kTR_s} \quad SNR_{in} = \frac{S_{in}(f)}{\overline{e_{ns}^2} / \Delta f} = \frac{S_{in}(f)}{4kTR_s}$$

Noise Factor calculation:

Noise Factor
$$= \frac{SNR_{in}}{SNR_{out}} = \frac{i_{ndg}^2 / \Delta f + |g_m Q|^2 4kTR_s}{(g_m Q)^2 4kTR_s}$$
$$= 1 + \frac{\overline{i_{ndg}^2} / \Delta f}{(g_m Q)^2 4kTR_s}$$
From previous analysis
$$\overline{i_{ndg}^2} / \Delta f = 4kT\gamma g_{do} \left(1 - 2|c|\chi_d + (Q^2 + 1)\chi_d^2\right)$$

$$\Rightarrow \text{ Noise Factor} = 1 + \frac{\gamma g_{do} \left(1 - 2|c|\chi_d + (Q^2 + 1)\chi_d^2\right)}{(g_m Q)^2 R_s}$$

H.-S. Lee & M.H. Perrott

Calculate Noise Factor (Part 3)

Noise Factor =
$$1 + \frac{\gamma g_{do} \left(1 - 2|c|\chi_d + (Q^2 + 1)\chi_d^2\right)}{(g_m Q)^2 R_s}$$

Modify denominator using expressions for Q and w_t

$$Q = \frac{1}{w_o R_s C_{gs}}, \quad w_t \approx \frac{g_m}{C_{gs}}$$
$$\Rightarrow \quad (g_m Q)^2 R_s = g_m^2 Q \frac{R_s}{w_o R_s C_g s} = g_m Q \frac{g_m}{C_{gs}} \frac{1}{w_o} = g_m Q \frac{w_t}{w_o}$$

Resulting expression for noise factor:

Noise Factor =
$$1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{Q} \left(1 - 2|c|\chi_d + (Q^2 + 1)\chi_d^2\right)$$

Noise Factor scaling coefficient

Noise factor primarily depends on Q, w_o/w_t, and process specs H.-S. Lee & M.H. Perrott

Noise Factor =
$$1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{Q} \left(1 - 2|c|\chi_d + (Q^2 + 1)\chi_d^2\right)$$

Noise Factor scaling coefficient

- We see that the noise factor will be minimized for some value of Q
 - Could solve analytically by differentiating with respect to Q and solving for peak value (i.e. where deriv. = 0)
- In Tom Lee's book (pp 272-277), the minimum noise factor for the MOS common source amplifier (i.e. no degeneration) is found to be:

Min Noise Factor =
$$1 + \left(\frac{w_o}{w_t}\right) \frac{2}{\sqrt{5}} \sqrt{\gamma \delta(1 - |c|^2)}$$

Noise Factor scaling coefficient

How do these compare?

H.-S. Lee & M.H. Perrott

Plot of Minimum Noise Factor and Noise Factor Vs. Q

H.-S. Lee & M.H. Perrott

Achieving Minimum Noise Factor

- For common source amplifier without degeneration
 - Minimum noise factor can only be achieved at resonance if gate noise is uncorrelated to drain noise (i.e., if c = 0) we'll see this next lecture
 - We typically must operate slightly away from resonance in practice to achieve minimum noise factor since c will be nonzero
- How do we determine the optimum source impedance to minimize noise figure in classical analysis?
 - Next lecture!