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VCO Design for Narrowband Wireless Systems
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Design Issues
- Tuning Range – need to cover all frequency channels
- Noise – impacts receiver sensitivity performance
- Power – want low power dissipation
- Isolation – want to minimize noise pathways into VCO
- Sensitivity to process/temp variations – need to make it 

manufacturable in high volume
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VCO Design For Broadband High Speed Data Links

Design Issues
- Same as wireless,  but:

Required noise performance is often less stringent
Tuning range is often narrower
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Popular VCO Structures
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LC Oscillator:  low phase noise, large area
Ring Oscillator:  easy to integrate, higher phase noise
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Barkhausen’s Criteria for Oscillation

Closed loop transfer function

Self-sustaining oscillation at 
frequency ωo if

H(jw)
x = 0 ye

e(t)
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Barkhausen Criteria

H(jwo) = 1

Asin(wot)
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- Amounts to two conditions:
Gain = 1 at frequency ωo

Phase = n360 degrees (n = 0,1,2,…) at frequency ωo
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Example 1:  Ring Oscillator

Gain is set to 1 by saturating characteristic of 
inverters
Odd number of stages to prevent stable DC 
operating point
Phase equals 360 degrees at frequency of 
oscillation (180 from inversion, another 180 from 
gate delays)
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- Assume N stages each with phase shift ∆Φ

- Alternately, N stages with delay ∆t
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Further Info on Ring Oscillators

Due to their relatively poor phase noise performance, 
ring oscillators are rarely used in RF systems
- They are used quite often in high speed data links,
- We will focus on LC oscillators in this lecture

Some useful info on CMOS ring oscillators
- Maneatis et. al., “Precise Delay Generation Using 

Coupled Oscillators”, JSSC, Dec 1993 (look at pp 127-
128 for delay cell description)

- Todd  Weigandt’s PhD thesis –
http://kabuki.eecs.berkeley.edu/~weigandt/
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Example 2:  Resonator-Based Oscillator
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Barkhausen Criteria for oscillation at frequency ωo:

- Assuming Gm is purely real, Z(jωo) must also be purely real
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A Closer Look At Resonator-Based Oscillator

For parallel resonator at resonance
- Looks like resistor (i.e., purely real) at resonance

Phase condition is satisfied
Magnitude condition achieved by setting GmRp = 1
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Impact of Different Gm Values
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Root locus plot allows us to view closed loop pole 
locations as a function of open loop poles/zero and 
open loop gain (GmRp)
- As gain (GmRp) increases, closed loop poles move into 

right half S-plane
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Impact of Setting Gm too low

Open Loop
Resonator

Poles and Zero

GmRp < 1

Locus of
Closed Loop

Pole Locations

Closed Loop Step Response
jw

σ

S-plane

Closed loop poles end up in the left half S-plane
- Underdamped response occurs

Oscillation dies out
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Impact of Setting Gm too High
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Resonator

Poles and Zero

GmRp > 1

Locus of
Closed Loop

Pole Locations

Closed Loop Step Response
jw

σ

S-plane

Closed loop poles end up in the right half S-plane
- Unstable response occurs

Waveform blows up!
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Setting Gm To Just the Right Value

Open Loop
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Closed loop poles end up on jw axis
- Oscillation maintained

Issue – GmRp needs to exactly equal 1
- How do we achieve this in practice?
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Amplitude Feedback Loop

Adjustment
of Gm

Oscillator

Peak
Detector

Desired
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Output

One thought is to detect oscillator amplitude, and 
then adjust Gm so that it equals a desired value
- By using feedback, we can precisely achieve GmRp = 1

Issues
- Complex, requires power, and adds noise
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Leveraging Amplifier Nonlinearity as Feedback
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Practical transconductance amplifiers have saturating 
characteristics
- Harmonics created, but filtered out by resonator
- Our interest is in the relationship between the input and 

the fundamental of the output
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Amplifier Nonlinearity as Amplitude Control

As input amplitude is increased
- Effective gain from input to fundamental of output drops
- Amplitude feedback occurs!  (GmRp = 1 in steady-state)
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One-Port View of Resonator-Based Oscillators
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Convenient for intuitive analysis
Here we seek to cancel out loss in tank with a 
negative resistance element
- To achieve sustained oscillation, we must have 
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One-Port Modeling Requires Parallel RLC Network              

Since VCO operates over a very narrow band of 
frequencies, we can always do series to parallel 
transformations to achieve a parallel network for 
analysis

- Warning – in practice, RLC networks can have 
secondary (or more) resonant frequencies, which cause 
undesirable behavior

Equivalent parallel network masks this problem in hand 
analysis
Simulation will reveal the problem

LpRp Cp

Ls

RsL

Cs

RsC
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VCO Example – Negative Resistance Oscillator
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This type of oscillator structure is quite popular in 
current CMOS implementations
- Advantages

Simple topology
Differential implementation (good for feeding differential 
circuits)
Good phase noise performance can be achieved
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Analysis of Negative Resistance Oscillator (Step 1)
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Derive a parallel RLC network that includes the loss of 
the tank inductor and capacitor
- Typically, such loss is dominated by series resistance in 

the inductor
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Analysis of Negative Resistance Oscillator (Step 2)

M1

Vout -1

Lp1Rp1 Cp1

Vout

Lp1Rp1 Cp1

-Gm1

1

Lp1Rp1 Cp1

M1

Ibias

M2

Vs

Vout Vout

Split oscillator circuit into half circuits to simplify analysis
- Leverages the fact that we can approximate Vs as being 

incremental ground (this is not quite true, but close enough)
Recognize that we have a diode connected device with a 
negative transconductance value
- Replace with negative resistor

Note: Gm is large signal transconductance value
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Design of Negative Resistance Oscillator

Design tank components to achieve high Q
- Resulting Rp value is as large as possible

Choose bias current (Ibias) for large swing (without going 
far into Gm saturation)
- We’ll estimate swing as a function of Ibias shortly

Choose transistor size to achieve adequately large gm1- Usually twice as large as 1/Rp1 to guarantee startup 
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Calculation of Oscillator Swing: Max. Sinusoidal Oscillation

If we assume the amplitude is large, Ibias is fully steered to 
one side at the peak and the bottom of the sinusoid:
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Calculation of Oscillator Swing: Squarewave Oscillation

If amplitude is very large, we can assume I1(t) is a square 
wave
- We are interested in determining fundamental component

(DC and harmonics filtered by tank)

- Fundamental component is

- Resulting oscillator amplitude
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Variations on a Theme

Biasing can come from top or bottom
Can use either NMOS, PMOS, or both for transconductor
- Use of both NMOS and PMOS for coupled pair would appear to 

achieve better phase noise at a given power dissipation
See Hajimiri et. al, “Design Issues in CMOS Differential LC 
Oscillators”, JSSC, May 1999 and Feb, 2000 (pp 286-287) 
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Colpitts Oscillator
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Carryover from discrete designs in which single-ended 
approaches were preferred for simplicity
- Achieves negative resistance with only one transistor
- Differential structure can also be implemented, though

Good phase noise can be achieved, but not apparent 
there is an advantage of this design over negative 
resistance design for CMOS applications
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Analysis of Cap Transformer used in Colpitts

Voltage drop across RL is reduced by capacitive voltage 
divider
- Assume that impedances of caps are less than RL at resonant 

frequency of tank (simplifies analysis)
Ratio of V1 to Vout set by caps and not RL

Power conservation leads to transformer relationship 
shown (See Lecture 4)
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Simplified Model of Colpitts

Purpose of cap transformer
- Reduces loading on tank
- Reduces swing at source node (important for bipolar version)

Transformer ratio set to achieve best noise performance
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Design of Colpitts Oscillator

Design tank for high Q
Choose bias current (Ibias) for large swing (without going far 
into Gm saturation)
Choose transformer ratio for best noise
- Rule of thumb: choose N = 1/5 according to Tom Lee

Choose transistor size to achieve adequately large gm1
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Calculation of Oscillator Swing as a Function of Ibias

I1(t) consists of pulses whose shape and width are a 
function of the transistor behavior and transformer ratio 
- Approximate as narrow square wave pulses with width W

- Fundamental component is

- Resulting oscillator amplitude
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Clapp Oscillator
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Same as Colpitts except that inductor portion of tank 
is isolated from the drain of the device
- Allows inductor voltage to achieve a larger amplitude 

without exceeded the max allowable voltage at the drain
Good for achieving lower phase noise
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Simplified Model of Clapp Oscillator

Looks similar to Colpitts model
- Be careful of parasitic resonances!
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Hartley Oscillator
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Same as Colpitts, but uses a tapped inductor rather 
than series capacitors to implement the transformer 
portion of the circuit
- Not popular for IC implementations due to the fact that 

capacitors are easier to realize than inductors
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Simplified Model of Hartley Oscillator
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Similar to Colpitts, again be wary of 
parasitic resonances
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Integrated Resonator Structures

Inductor and capacitor tank
- Lateral caps have high Q (> 50)
- Spiral inductors have moderate Q (5 to 10), but 

completely integrated and have tight tolerance (< ± 10%)

- Bondwire inductors have high Q (> 40), but not as 
“integrated” and have poor tolerance (> ± 20%)

- Note:  see Lecture 6 for more info on these
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Integrated Resonator Structures

Integrated transformer
- Leverages self and mutual inductance for resonance to 

achieve higher Q
- See Straayer et. al., “A low-noise transformer-based 1.7 

GHz CMOS VCO”, ISSCC 2002, pp 286-287
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Quarter Wave Resonator

Impedance calculation (from Lecture 4)

- Looks like parallel LC tank!
Benefit – very high Q can be achieved with fancy 
dielectric
Negative – relatively large area (external implementation 
in the past), but getting smaller with higher frequencies!
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Other Types of Resonators

Quartz crystal
- Very high Q, and very accurate and stable resonant 

frequency
Confined to low frequencies (< 200 MHz)
Non-integrated

- Used to create low noise, accurate, “reference” oscillators
SAW devices
- Wide range of frequencies, cheap (see Lecture 9)

MEMS devices
- Cantilever beams – promise high Q, but non-tunable and 

haven’t made it to the GHz range, yet, for resonant frequency
- FBAR – Q > 1000, but non-tunable and poor accuracy
- Other devices are on the way!
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