MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

Massachusetts Institute of Technology March 29, 2005

Copyright © 2005 by Michael H. Perrott

VCO Design for Narrowband Wireless Systems

Design Issues

- Tuning Range need to cover all frequency channels
- Noise impacts receiver sensitivity performance
- Power want low power dissipation
- Isolation want to minimize noise pathways into VCO
- Sensitivity to process/temp variations need to make it manufacturable in high volume

VCO Design For Broadband High Speed Data Links

Design Issues

- Same as wireless, but:
 - Required noise performance is often less stringent
 - Tuning range is often narrower

Popular VCO Structures

LC Oscillator: low phase noise, large area

Ring Oscillator: easy to integrate, higher phase noise MIT OCW

Barkhausen's Criteria for Oscillation

Closed loop transfer function

$$G(jw) = \frac{Y(jw)}{X(jw)} = \frac{H(jw)}{1 - H(jw)}$$

 Self-sustaining oscillation at frequency ω_o if

$$H(jw_o) = 1$$

- Amounts to two conditions:
 - Gain = 1 at frequency ω_o
 - Phase = n360 degrees (n = 0,1,2,...) at frequency ω_o

M.H. Perrott

Example 1: Ring Oscillator

- Gain is set to 1 by saturating characteristic of inverters
- Odd number of stages to prevent stable DC operating point
- Phase equals 360 degrees at frequency of oscillation (180 from inversion, another 180 from gate delays)
 - Assume N stages each with phase shift $\Delta \Phi$

$$N\Delta\Phi = 180^{\circ} \Rightarrow \Delta\Phi = \frac{180^{\circ}}{N}$$

Alternately, N stages with delay ∆t

$$N\Delta t = \frac{T}{2} \Rightarrow \Delta t = \frac{T/2}{N}$$

Further Info on Ring Oscillators

- Due to their relatively poor phase noise performance, ring oscillators are rarely used in RF systems
 - They are used quite often in high speed data links,
 - We will focus on LC oscillators in this lecture
- Some useful info on CMOS ring oscillators
 - Maneatis et. al., "Precise Delay Generation Using Coupled Oscillators", JSSC, Dec 1993 (look at pp 127-128 for delay cell description)
 - Todd Weigandt's PhD thesis http://kabuki.eecs.berkeley.edu/~weigandt/

Example 2: Resonator-Based Oscillator

Barkhausen Criteria for oscillation at frequency ω_o:

$$G_m Z(jw_o) = 1$$

- Assuming G_m is purely real, Z(j ω_o) must also be purely real

$$G_m R_p = 1$$

M.H. Perrott

A Closer Look At Resonator-Based Oscillator

For parallel resonator at resonance

- Looks like resistor (i.e., purely real) at resonance
 - Phase condition is satisfied
 - Magnitude condition achieved by setting G_mR_p = 1

M.H. Perrott

Impact of Different G_m Values

- Root locus plot allows us to view closed loop pole locations as a function of open loop poles/zero and open loop gain (G_mR_p)
 - As gain (G_mR_p) increases, closed loop poles move into right half S-plane

Impact of Setting G_m too low

Closed loop poles end up in the left half S-plane

- Underdamped response occurs
 - Oscillation dies out

Impact of Setting G_m too High

Closed loop poles end up in the right half S-plane

- Unstable response occurs
 - Waveform blows up!

Setting G_m To Just the Right Value

- Closed loop poles end up on jw axis
 - Oscillation maintained
- Issue G_mR_p needs to exactly equal 1
 - How do we achieve this in practice?

Amplitude Feedback Loop

- One thought is to detect oscillator amplitude, and then adjust G_m so that it equals a desired value
 - By using feedback, we can precisely achieve $G_m R_p = 1$
- Issues
 - Complex, requires power, and adds noise

Leveraging Amplifier Nonlinearity as Feedback

- Practical transconductance amplifiers have saturating characteristics
 - Harmonics created, but filtered out by resonator
 - Our interest is in the relationship between the input and the fundamental of the output

M.H. Perrott

Amplifier Nonlinearity as Amplitude Control

As input amplitude is increased

- Effective gain from input to fundamental of output drops
- Amplitude feedback occurs! (G_mR_p = 1 in steady-state)

One-Port View of Resonator-Based Oscillators

- Convenient for intuitive analysis
- Here we seek to cancel out loss in tank with a negative resistance element
 - To achieve sustained oscillation, we must have

$$\frac{1}{G_m} = R_p \quad \Rightarrow \quad G_m R_p = \mathbf{1}$$

M.H. Perrott

One-Port Modeling Requires Parallel RLC Network

Since VCO operates over a very narrow band of frequencies, we can always do series to parallel transformations to achieve a parallel network for analysis

- Warning in practice, RLC networks can have secondary (or more) resonant frequencies, which cause undesirable behavior
 - Equivalent parallel network masks this problem in hand analysis
 - Simulation will reveal the problem

VCO Example – Negative Resistance Oscillator

This type of oscillator structure is quite popular in current CMOS implementations

- Advantages
 - Simple topology
 - Differential implementation (good for feeding differential circuits)
 - Good phase noise performance can be achieved

Analysis of Negative Resistance Oscillator (Step 1)

- Derive a parallel RLC network that includes the loss of the tank inductor and capacitor
 - Typically, such loss is dominated by series resistance in the inductor

Analysis of Negative Resistance Oscillator (Step 2)

- Split oscillator circuit into half circuits to simplify analysis
 - Leverages the fact that we can approximate V_s as being incremental ground (this is not quite true, but close enough)
- Recognize that we have a diode connected device with a negative transconductance value
 - Replace with negative resistor
 - Note: G_m is *large signal* transconductance value

Design of Negative Resistance Oscillator

- Design tank components to achieve high Q
 - Resulting R_p value is as large as possible
- Choose bias current (I_{bias}) for large swing (without going far into G_m saturation)
 - We'll estimate swing as a function of I_{bias} shortly
- Choose transistor size to achieve adequately large g_{m1}
 - Usually twice as large as 1/R_{p1} to guarantee startup

M.H. Perrott

Calculation of Oscillator Swing: Max. Sinusoidal Oscillation

If we assume the amplitude is large, I_{bias} is fully steered to one side at the peak and the bottom of the sinusoid:

$$i_{1}(t), i_{2}(t) > 0 \qquad i_{1}(t) + i_{2}(t) = I_{bias}$$

$$i_{1}(t) = \frac{I_{bias}}{2} (sinw_{o}t + 1) \quad i_{2}(t) = \frac{I_{bias}}{2} (-sinw_{o}t + 1)$$

$$A = \frac{1}{2} I_{bias} R_{p}$$

M.H. Perrott

Calculation of Oscillator Swing: Squarewave Oscillation

- If amplitude is very large, we can assume I₁(t) is a square wave
 - We are interested in determining fundamental component

M.H. Perrott

Variations on a Theme

- Biasing can come from top or bottom
- Can use either NMOS, PMOS, or both for transconductor
 - Use of both NMOS and PMOS for coupled pair would appear to achieve better phase noise at a given power dissipation

 See Hajimiri et. al, "Design Issues in CMOS Differential LC Oscillators", JSSC, May 1999 and Feb, 2000 (pp 286-287) *MIT OCW*

Colpitts Oscillator

- Carryover from discrete designs in which single-ended approaches were preferred for simplicity
 - Achieves negative resistance with only one transistor
 - Differential structure can also be implemented, though
- Good phase noise can be achieved, but not apparent there is an advantage of this design over negative resistance design for CMOS applications

Analysis of Cap Transformer used in Colpitts

- Voltage drop across R_L is reduced by capacitive voltage divider
 - Assume that impedances of caps are less than R_L at resonant frequency of tank (simplifies analysis)
 - Ratio of V₁ to V_{out} set by caps and not R_L
- Power conservation leads to transformer relationship shown (See Lecture 4)

Simplified Model of Colpitts

Reduces swing at source node (important for bipolar version)

Transformer ratio set to achieve best noise performance MIT OCW

Design of Colpitts Oscillator

- Design tank for high Q
- Choose bias current (I_{bias}) for large swing (without going far into G_m saturation)
- Choose transformer ratio for best noise
 - Rule of thumb: choose N = 1/5 according to Tom Lee

Choose transistor size to achieve adequately large g_{m1} *M.H. Perrott*

Calculation of Oscillator Swing as a Function of Ibias

- I₁(t) consists of pulses whose shape and width are a function of the transistor behavior and transformer ratio
 - Approximate as narrow square wave pulses with width W

Clapp Oscillator

- Same as Colpitts except that inductor portion of tank is isolated from the drain of the device
 - Allows inductor voltage to achieve a larger amplitude without exceeded the max allowable voltage at the drain
 - Good for achieving lower phase noise

Simplified Model of Clapp Oscillator

Looks similar to Colpitts model

Be careful of parasitic resonances!

M.H. Perrott

Hartley Oscillator

- Same as Colpitts, but uses a tapped inductor rather than series capacitors to implement the transformer portion of the circuit
 - Not popular for IC implementations due to the fact that capacitors are easier to realize than inductors

Simplified Model of Hartley Oscillator

M.H. Perrott

Integrated Resonator Structures

- Inductor and capacitor tank
 - Lateral caps have high Q (> 50)
 - Spiral inductors have moderate Q (5 to 10), but completely integrated and have tight tolerance (< \pm 10%)
 - Bondwire inductors have high Q (> 40), but not as "integrated" and have poor tolerance (> \pm 20%)
 - Note: see Lecture 6 for more info on these

Integrated Resonator Structures

- Integrated transformer
 - Leverages self and mutual inductance for resonance to achieve higher Q
 - See Straayer et. al., "A low-noise transformer-based 1.7 GHz CMOS VCO", ISSCC 2002, pp 286-287

Quarter Wave Resonator

Impedance calculation (from Lecture 4)

$$Z(\lambda_o/4) pprox -jrac{2}{\pi}\sqrt{rac{L}{C}}\left(rac{w_o}{\Delta w}
ight)$$

- Looks like parallel LC tank!
- Benefit very high Q can be achieved with fancy dielectric
- Negative relatively large area (external implementation in the past), but getting smaller with higher frequencies!

Other Types of Resonators

- Quartz crystal
 - Very high Q, and very accurate and stable resonant frequency
 - Confined to low frequencies (< 200 MHz)
 - Non-integrated
 - Used to create low noise, accurate, "reference" oscillators
- SAW devices
 - Wide range of frequencies, cheap (see Lecture 9)
- MEMS devices
 - Cantilever beams promise high Q, but non-tunable and haven't made it to the GHz range, yet, for resonant frequency
 - **FBAR** Q > 1000, but non-tunable and poor accuracy
 - Other devices are on the way!