MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6. 776 High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers

Massachusetts Institute of Technology March 31, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Voltage Controlled Oscillators (VCO's)

Include a tuning element to adjust oscillation frequency

- Typically use a variable capacitor (varactor)
- Varactor replaces (part of) fixed capacitance
 - Note that some fixed capacitance cannot be removed (transistor junctions, interconnect, etc.)

Fixed cap lowers frequency tuning range
 H.-S. Lee & M.H. Perrott

Model for Voltage to Frequency Mapping of VCO

Model VCO in a small signal manner by looking at deviations in frequency about the bias point

Assume linear relationship between input voltage and output frequency

$$F_{out}(t) = K_v v_{in}(t)$$

H.-S. Lee & M.H. Perrott

Model for Voltage to Phase Mapping of VCO

$$F_{out}(t) = K_v v_{in}(t)$$

- Phase is more convenient than frequency for analysis
 - The two are related through an integral relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_v v_{in}(\tau) d\tau$$

Intuition of integral relationship between frequency and phase

Frequency Domain Model of VCO

Take Laplace Transform of phase relationship

H.-S. Lee & M.H. Perrott

Varactor Implementation – Diode Version

- Consists of a reverse biased diode junction
 - Variable capacitor formed by depletion capacitance
 - Capacitance drops as roughly the square root of the bias voltage
- Advantage can be fully integrated in CMOS
- Disadvantages low Q (often < 20), and low tuning range (\pm 20%)

A Recently Popular Approach – The MOS Varactor

- Consists of a MOS transistor (NMOS or PMOS) with drain and source connected together
 - Abrupt change in capacitance as inversion channel forms
- Advantage easily integrated in CMOS
- Disadvantage Q is relatively low in the transition region
 - Note that large signal is applied to varactor transition region will be swept across each VCO cycle
- Watch out for gate-to-bulk capacitance!

A Recently Popular Approach – The MOS Varactor

H.-S. Lee & M.H. Perrott

A Method To Increase Q of MOS Varactor

- High Q metal caps are switched in to provide coarse tuning
- Low Q MOS varactor used to obtain fine tuning
- See Hegazi et. al., "A Filtering Technique to Lower LC Oscillator Phase Noise", JSSC, Dec 2001, pp 1921-1930

H.-S. Lee & M.H. Perrott

Supply Pulling and Pushing

- Supply voltage has an impact on the VCO frequency
 - Voltage across varactor will vary, thereby causing a shift in its capacitance
 - Voltage across transistor drain junctions will vary, thereby causing a shift in its depletion capacitance
- This problem is addressed by building a supply regulator specifically for the VCO

Injection Locking in Oscillators

Recall Barkhausen's Criteria

Closed loop transfer function

$$G(jw) = \frac{Y(jw)}{X(jw)} = \frac{H(jw)}{1 - H(jw)}$$

 Self-sustaining oscillation at frequency ω_o if

$$H(jw_o)=1$$

Injection Locking Mechanism

With the input x=0, the selfsustaining oscillation occurs at ω_o because

 $|G(jw_o)| = \infty$

- At frequency small deviation Δω away from ω_o, the magnitude of G(jω) is still very large
- So, what if the input x is a nonzero signal at ω_o+∆ω?
- If the circuit is purely linear, the output y will contain both the oscillation at ω_o and the amplified input at $\omega_o + \Delta \omega$ (superposition)

Injection Locking, Cnt'd

- In a real oscillator, the transfer function is non-linear to keep the amplitude constant (either by amplitude feedback or saturating G_m characteristic)
- But, let's first look at what happens if the oscillator transfer function is linear and if a small amplitude signal is injected at the input x

Intuitive Look at Injection Locking, Linear Case

- Let's conceptually make the oscillator transfer function linear by letting the output reach a desired amplitude (say 1V) and disengaging the amplitude feedback after sampling and holding the G_m adjustment voltage at that level
- The value of G_m is precisely that would make $|G(jw_o)| = \infty$ at that point
- Assuming nothing drifts, the output would be a constant amplitude oscillation at ω_o
- Next, let's see what happens if we inject a sinusoidal signal with a small amplitude, say 10mV, at $\omega_0 + \Delta \omega$ at input x
- $|G(j\omega)|$ is very large at this frequency let's say $|G(j\omega)| = 10,000$ at $\omega = \omega_0 + \Delta \omega$
- The output will be the superposition of 1V sinusoid at ω_o and a 100V sinusoid at $\omega_o + \Delta \omega$

Intuitive Look at Injection Locking, Nonlinear Case

- If the amplitude feedback is re-engaged, it will lower G_m to keep the total amplitude at the desired 1V level.
- This value of G_m would adjusted be far below what's necessary to sustain oscillation at ω_o
- Thus, only the sinusoid at $\omega_0 + \Delta \omega$ will appear at the output with an amplitude of 1V. The VCO frequency is hence locked to the input frequency $\omega_0 + \Delta \omega$ rather than oscillating at the free running frequency of ω_0
- The injection locking phenomenon can be exploited as an alternative to phase-locked loops (See Tom Lee's book, pp563-566, or p439, 1st, ed.)
- Otherwise, the injection locking is troublesome

Example of Undesired Injection Locking

For homodyne systems, VCO frequency can be very close to that of interferers

- Injection locking can happen if inadequate isolation from mixer RF input to LO port
- Follow VCO with a buffer stage with high reverse isolation to alleviate this problem

Recent VCO Techniques

G_m-boosted VCO for lower phase noise
 Recall g_m-boosted LNA lowered noise factor:

The apparent g_m boost is is the result of the gate and source having 180° out-of-phase waveforms (it increases V_{gs}).

Gm-Boosted VCO

- Similar concept can be employed for VCO's to lower phase noise.
- Transformer coupling is possible, but takes up area.
- Can boost g_m just by feeding output back to source

See Xiaoyong Li et. al., "Low-Power gm-boosted LNA and VCO Circuits in 0.18µm CMOS" 2005 ISSCC Digest of Technical Papers pp. 534-353

H.-S. Lee & M.H. Perrott

Wide Tune Range VCO

 Davide Guermandi, et. al "A 0.75 to 2.2GHz Continuously-Tunable Quadrature VCO," Digest of Technical Papers, 2005 ISSCC pp 536-537

Figure by MIT OCW.

H.-S. Lee & M.H. Perrott

Wide Tune Range VCO, Continued

Figure by MIT OCW.

Very High Frequency VCO

 Ping Chen, et. al. "A 114GHz VCO in 0.13µm CMOS Technology,"
 2005 ISSCC Digest of Technical Papers pp. 404-405

Figure by MIT OCW.

H.-S. Lee & M.H. Perrott

Recent VCO Techniques

 R. Aparicio and A. Hajimiri, "Circular Geometry Oscillators," ISSCC 2004 Digest of Technical Papers, pp378-379

Slab inductors offer higher Q than spiral/circular inductors due to less current crowding and less substrate loss
In a conventional oscillator topology, the interconnect adds undesired inductance with loss
Circular geometry oscillator removes this problem

Figure by MIT OCW.

H.-S. Lee & M.H. Perrott

Circular Oscillator Implementation

Figure by MIT OCW.

Shorts the outputs at DC to remove stable DC operating point Shorts outputs at even harmonics to suppress undesired modes *H.-S. Lee & M.H. Perrott*

Die Photo and Measured Results

Circular-Geometry Oscillator	Single Frequency	VCO
Technology	SiGe 7HP (CMOS transistors only)	
Channel Length	0.18µm	
Center Frequency	5.35GHz	5.36GHz
Tuning Range		8.3%
Output Power	1dBm	
V _{dd}	1.4V	1.8V
I _{bias}	10mA	12mA

H.-S. Lee & M.H. Perrott

Figure by MIT OCW.

Circular Standing Wave Oscillator

D. Ham and W. Andress ISSCC 2004 Digest of Technical Papers, pp380-381

H.-S. Lee & M.H. Perrott

Standing Wave Oscillators

Figure by MIT OCW.

Ring Transmission Line Principle

H.-S. Lee & M.H. Perrott

Circular Standing Wave Oscillator (CSWO)

H.-S. Lee & M.H. Perrott

Figure by MIT OCW.

Die Photo and Measurement Set up

H.-S. Lee & M.H. Perrott

Figure by MIT OCW.

Mixers

H.-S. Lee & M.H. Perrott

Mixer Design for Wireless Systems

- Noise Figure impacts receiver sensitivity
- Linearity (IIP3) impacts receiver blocking performance
- Conversion gain lowers noise impact of following stages
- Power match want max voltage gain rather than power match for integrated designs
- Power want low power dissipation
- Isolation want to minimize interaction between the RF, IF, and LO ports
- Sensitivity to process/temp variations need to make it manufacturable in high volume

Ideal Mixer Behavior

RF spectrum converted to a lower IF center frequency

- IF stands for intermediate frequency
 - If IF frequency is nonzero heterodyne or low IF receiver
 - If IF frequency is zero homodyne receiver
- Use a filter at the IF output to remove undesired high frequency components

The Issue of Image Aliasing

- When the IF frequency is nonzero, there is an image band for a given desired channel band
 - Frequency content in image band will combine with that of the desired channel at the IF output
 - The impact of the image interference cannot be removed through filtering at the IF output!

LO Feedthrough

LO feedthrough will occur from the LO port to IF output port due to parasitic capacitance, power supply coupling, etc.

- Often significant since LO output much higher than RF signal
 - If large, can potentially desensitize the receiver due to the extra dynamic range consumed at the IF output
 - If small, can generally be removed by filter at IF output

H.-S. Lee & M.H. Perrott

Reverse LO Feedthrough

- Reverse LO feedthrough will occur from the LO port to RF input port due to parasitic capacitance, etc.
 - If large, and LNA doesn't provide adequate isolation, then LO energy can leak out of antenna and violate emission standards for radio
 - Must insure that isolate to antenna is adequate

Self-Mixing of Reverse LO Feedthrough

- LO component in the RF input can pass back through the mixer and be modulated by the LO signal
 - DC and 2f_o component created at IF output
 - Of no consequence for a heterodyne system, but can cause problems for homodyne systems (i.e., zero IF)

Removal of Image Interference – Solution 1

- An image reject filter can be used before the mixer to prevent the image content from aliasing into the desired channel at the IF output
- Issue must have a high IF frequency
 - Filter bandwidth must be large enough to pass all channels

Filter Q cannot be arbitrarily large (low IF requires high Q) H.-S. Lee & M.H. Perrott MIT OCW

Removal of Image Interference – Solution 2

- Mix directly down to baseband (i.e., homodyne approach)
 - With an IF frequency of zero, there is no image band
- Issues many!
 - DC term of LO feedthrough can corrupt signal if time-varying
 - DC offsets can swamp out dynamic range at IF output
- 1/f noise, back radiation through antenna H.-S. Lee & M.H. Perrott

Removal of Image Interference – Solution 3, Image Reject Mixer

- Image rejected by similar method to SSB generation
- Image rejection limited by amplitude and phase matching of RF and LO paths. 40 dB image suppression is typical
- RF filter can reduce the image further if necessary, otherwise the RF image reject filter can be omitted.

Frequency Domain View of Image Reject Mixer

H.-S. Lee & M.H. Perrott

Frequency Domain View of Image Reject Mixer, Cnt'd

It can be shown that image is rejected regardless of the RF input phase

H.-S. Lee & M.H. Perrott