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Image Reject Mixer, Review
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® Rather than filtering out the image, we can cancel it out using an image

rejection mixer
= Advantages

= Allows a low IF frequency to be used without requiring a high Q filter
» Very amenable to integration

= Disadvantage

= Level of image rejection is determined by mismatch in gain and phase different

paths

» Practical architectures limited to about 40 dB image rejection
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Image Reject Mixer, Alternate Implementation
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" Avoids 90 degree phase shift of signal

" Precise 90 degree phase shift of LO outputs is much
easier by using quadrature VCO'’s or frequency dividers
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Image Reject Mixer Principles — Step 1
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Image Reject Mixer Principles — Step 2
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Image Reject Mixer Principles — Step 3
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Image Reject Mixer Principles — Step 4
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Image Reject Mixer Principles — Implementation Issues
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" For all analog architecture, additional mixers introduce more
mismatch and noise (limits image rejection and noise figure)
= Can fix this problem by digitizing c(t) and d(t), and then performing
final mixing in the digital domain
" Can generate accurate quadrature sine wave signals by using a
frequency divider
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What if RF in(f) is Purely Imaginary?
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" Both desired and image signals disappear!
= Architecture is sensitive to the phase of the RF input

" Can we modify the architecture to fix this issue?

H.-S. Lee & M.H. Perrott MIT OCW



Modification of Mixer Architecture for Imaginary RF in(f)
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" Desired channel now appears given two changes

= Sine and cosine demodulators are switched in second half of
image rejection mixer

= The two paths are now added rather than subtracted

® |ssue — architecture now zeros out desired channel when
RF in(f) is purely real

H.-S. Lee & M.H. Perrott MIT OCW



Overall Mixer Architecture — Use I/Q Demodulation
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" Both real and imag. parts of RF input now pass through
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Example of Double Conversion Image Reject Mixer
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Figure by MIT OCW.

REF: “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless
Telephone Applications,”J C. Rudell, et. al. IEEE J. Solid-State Circuits, Vol. SC-
32, Dec. 1997 pp 2071-2088

" 1/Q Image rejection provided by 6 mixers
" |F filtering is LPF: single-chip integration is easier

" LO frequency is unequal to carrier — LO leakage is not

an issue
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Mixer Single-Sideband (SSB) Noise Figure
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" Issue —broadband noise from mixer or front end filter will be
present in both image and desired bands

= Noise from both image and desired bands will combine in desired

channel at IF output
= Neither image reject filter not channel filter can remove this

= The SSB noise figure computes (correctly) noise in both the desired
signal band and image band with signal only in the desired band
(SSB signal, but DSB noise)
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Mixer Double-Sideband (DSB) Noise Figure
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® DSB NF assumes signal and noise in both sidebands (thus 3dB lower noise
figure) — this is misleading because there is no signal in the image band in
heterodyne receivers

" For zero IF, there is no image band-DSB noise figure is appropriate

= Noise from positive and negative frequencies combine, but the signals do as well
" DSB noise figure is 3 dB lower than SSB noise figure

= DSB noise figure often quoted since it sounds better

" For either case, Noise Figure should be computed through simulation
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A Practical Issue — Square Wave LO Oscillator Signals
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" Square waves are easier to generate than sine waves

= How do they impact the mixing operation when used as
the LO signal?

= We will briefly review Fourier transforms (series) to
understand this issue
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Two Important Transform Pairs

" Transform of a rectangle pulse in time is a sinc function

In frequency
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" Transform of an impulse train in time is an impulse
train in frequency
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Decomposition of Square Wave to Simplify Analysis

" Consider now a square wave with duty cycle W/T
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Associated Frequency Transforms

" Consider now a square wave with duty cycle W/T
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" Decomposition in frequency
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Overall Frequency Transform of a Square Wave

" Resulting transform relationship

y(t)

" Fundamental at frequency 1/T

= Higher harmonics have lower magnitude

" fW=T/2 (i.e., 50% duty cycle)
= No even harmonics!

" |f the waveform is between 1/2 and -1/2 (rather than 1 and 0)
= No DC component (50% duty cycle)
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Analysis of Using Square-Wave for LO Signal

RF in(f) RF in IF out
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" Each frequency component of LO signal will now mix with
the RF input

= If RF input spectrum sufficiently narrowband with respect to f,
then no aliasing will occur

" Desired output (mixed by the fundamental component) can
be extracted using a filter at the IF output
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Voltage Conversion Gain
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" Defined as voltage ratio of desired IF value to RF input

" Example: for an ideal mixer with RF input = Asin(2n(f, +
A f)t) and sine wave LO signal = Bcos(2xft)

TF out(t) = AQB ( cos(2r(AF)t) + cos(2m(2 fo +A f)t))

AB/2
= Voltage Conversion Gain = /

2
" For practical mixers, value depends on mixer topology
and LO signal (i.e., sine or square wave)
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Impact of High Voltage Conversion Gain
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" Benefit of high voltage gain
= The noise of later stages will have less of an impact

" |ssues with high voltage gain

= May be accompanied by higher noise figure than could
be achieved with lower voltage gain

= May be accompanied by nonlinearities that limit
interference rejection (i.e., passive mixers can generally
be made more linear than active ones)
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Impact of Nonlinearity in Mixers

Memoryless Ideal Memoryless
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Memoryless
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T
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" Ignoring dynamic effects, we can model mixer as
nonlinearities around an ideal mixer

= Nonlinearity A will have the same impact as LNA
nonlinearity (measured with 11P3)

= Nonlinearity B will change the spectrum of the LO signal
= We already looked at an extreme case (square wave)
= Changes conversion gain somewhat

= Nonlinearity C will cause self mixing of IF output
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Primary Focus is Typically Nonlinearity in RF Input Path

Memoryless Ideal Memoryless
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" Nonlinearity B not detrimental in most cases
= LO signal often a square wave anyway

" Nonlinearity C can be avoided by using a linear load (such as
a resistor)

" Nonlinearity A can hamper rejection of interferers
= Characterize with IIP3 as with LNA designs
= Use two-tone test to measure (similar to LNA)
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The Issue of Balance in Mixers
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" A balanced signal is defined to have a zero DC component

" Mixers have two signals of concern with respect to this
Issue — LO and RF signals

= Unbalanced RF input causes LO feedthrough
= Unbalanced LO signal causes RF feedthrough

" |ssue —transistors require a DC offset (e.g. V) for biasing
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Achieving a Balanced LO Signal with DC Biasing

" Combine two mixer paths with LO signal 180 degrees
out of phase between the paths

= DC component is cancelled

H.-S. Lee & M.H. Perrott MIT OCW



Single-Balanced Mixer

Vre(t) Il
IO
DCFX+-\-/-\ 1 v Transconductor
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" Works by converting RF input voltage to a current, then
switching current between each side of differential pair

" Achieves LO balance using technique on previous slide
= Subtraction between paths is inherent to differential output

" LO swing should be no larger than needed to fully turn on
and off differential pair
= Square wave is best to minimize noise from M, and M,
" Transconductor designed for high linearity
H.-S. Lee & M.H. Perrott MIT OCW




Transconductor Implementation 1

VRe Ci) Ryig .

" Apply RF signal to input of common source amp
= Transistor assumed to be in saturation

= Transconductance value is the same as that of the
transistor

" High V,,, places device in velocity saturation
= Allows high linearity to be achieved

H.-S. Lee & M.H. Perrott MIT OCW



Transconductor Implementation 2

Il Vbias< + >
VRFCi) Ibias l T

" Apply RF signal to a common gate amplifier

" Transconductance value set by inverse of series
combination of R, and 1/g,, of transistor

= Amplifier is effectively degenerated to achieve higher
linearity

lLi.s Can be set for large current density through
device to achieve higher linearity (velocity saturation)
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Transconductor Implementation 3

Ioli

Rs Cbig |
| |
—©MW—| LM
VRF Ci) Rbig %L
deg
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" Add degeneration to common source amplifier
= Inductor better than resistor
= No DC voltage drop

» Increased impedance at high frequencies helps filter out
undesired high frequency components

— Don’t generally resonate inductor with Cq

= Power match usually not required for IC implementation

due to proximity of LNA and mixer
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LO Feedthrough in Single-Balanced Mixers
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" DC component of RF input causes very large LO
feedthrough
= Can be removed by filtering, but can also be removed by

achieving a zero DC value for RF input
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Double-Balanced Mixer
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" DC values of LO and RF signals are zero (balanced)
" LO feedthrough dramatically reduced!
" But, practical transconductor needs bias current
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Achieving a Balanced RF Signal with Biasing

" Use the same trick as with LO balancing

DC component

cancels
signal component
adds
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Double-Balanced Mixer Implementation
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" Applies technique from previous slide

= Subtraction at the output achieved by cross-coupling
the output current of each stage
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Gilbert Mixer

Elll |2l
!
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" Use a differential pair to achieve the transconductor
Implementation

" LO signal can be sinusoidal or square wave (preferred)

" This is the preferred mixer implementation for most radio

systems!
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A Highly Linear CMOS Analog Multiplier
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Figure by MIT OCW.

B. Song, "CMOS RF circuits for data communications applications," IEEE Journal of
Solid-State Circuits, vol. 21, pp. 310 - 317, April 1986.

" Transistors are operated in triode regions
" The product terms cancel out resulting in linear multiplication
H.-S. Lee & M.H. Perrott MIT OCW



CMOS Analog Multiplier Analysis
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A Highly Linear CMOS Mixer
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J. Crols and M. S. J. Steyaert, "A 1.5 GHz highly linear CMOS downconversion mixer," IEEE
Journal of Solid-State Circuits, vol. 30, pp. 736 - 742, July 1995

" Transistors are alternated between the off and triode regions by the
LO signal

= RF signal varies resistance of channel when in triode
= Large bias required on RF inputs to achieve triode operation

" High linearity achieved, but very poor noise figure
H.-S. Lee & M.H. Perrott MIT OCW




Passive Mixers

T :
ZlAm Vrr ( : R/2  RJ2

" We can avoid the transconductor and/or op amp

" simply use switches to perform the mixing operation

= No bias current required allows low power operation to
be achieved

" Disadvantage: the RF input is low impedance
H.-S. Lee & M.H. Perrott MIT OCW



Square-Law Mixer

VRF VLO

@

" Achieves mixing through nonlinearity of MOS device
= lIdeally square law, which leads to a multiplication term

(Ver + V20)? = Vip + 2VrrVio + Vio
= Undesired components must be filtered out

" Need along channel device to get square law behavior
(no velocity saturation!)

" |ssue —no isolation between LO and RF ports
H.-S. Lee & M.H. Perrott MIT OCW



Alternative Implementation of Square Law Mixer

M, CbigZ

—1 [

Rpi
VRFCiD ) ( )I (+)v
Vbias l bias _ LO

" Drives LO and RF inputs on separate parts of the transistor
= Allows some isolation between LO and RF signals
" |ssue - poorer performance compared to multiplication-
based mixers
= Lots of undesired spectral components
= Poorer isolation between LO and RF ports

H.-S. Lee & M.H. Perrott MIT OCW



Flicker Noise in Gilbert-Type Mixer

" Let’s consider Gilbert-type mixer for direct conversion receivers

" 1/f noisein G, transistors (M, and M,): Up-converted to LO
frequency (no issue)

" 1/f noise in switches (M;-Mg) no effect if LO signal is a square
wave

" Typically, the LO output is not a square wave, and has finite slope
at the switching instant:1/f noise in M;-M; modulates the switching
threshold of switch pairs!

H.-S. Lee & M.H. Perrott MIT OCW



Flicker Noise Analysis

H. Darabi and J Chiu “A Noise Cancellation Technique in Active RF-CMOS Mixers,”
Digest of Technical Papers, 2005 ISSCC pp544-545.
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Figure by MIT OCW.
" 1/f noise at the output is proportional to bias current | and

inversely proportional to LO slope S
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Flicker Noise Reduction in Gilbert Mixer

" |nject current at the switching moments to reduce

current through switching devices
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H.-S. Lee & M.H. Perrott

Figure by MIT OCW.
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Actual Implementation of Noise Cancellation
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Figure by MIT OCW.

H. Darabi and J Chiu “A Noise Cancellation Technique in Active RF-CMOS Mixers,”
Digest of Technical Papers, 2005 ISSCC pp544-545.
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Noise Cancelled Mixer Results
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Noise Cancelled Mixer Results Summary (2GHz)

H.-S. Lee & M.H. Perrott

MIXER WITH MIXER WITHOUT
INJECTION INJECTION

Parameter

Measured Simulated Measured Simulated
11P3 10.5dBm 11dBm 10.5dBm 10.8dBm
White NF 11dB 11.8dB 11dB 11.6dB
Voltage Gain 0.5dB 1dB 0dB 0.5dB
Bias Current 2mA 2mA 2mA 2mA
NF at 20kHz 13.5dB 12.3dB 19.5dB 20.4dB
1-dB Compression -1.5dBm -0.8dBm -1.5dBm -0.8dBm

Figure by MIT OCW.
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