MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776 High Speed Communication Circuits Lecture 22

Noise in Integer-N and Fractional-N Frequency Synthesizers

Michael Perrott Massachusetts Institute of Technology May 3, 2005

Copyright © 2005 by Michael H. Perrott

Outline of PLL Lectures

- Integer-N Synthesizers
 - Basic blocks, modeling, and design
 - Frequency detection, PLL Type
- Noise in Integer-N and Fractional-N Synthesizers
 - Noise analysis of integer-N structure
 - Sigma-Delta modulators applied to fractional-N structures
 - Noise analysis of fractional-N structure
- Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques
 - PLL Design Assistant Software
 - Quantization noise reduction for improved bandwidth and noise

Frequency Synthesizer Noise in Wireless Systems

- Synthesizer noise has a negative impact on system
 - Receiver lower sensitivity, poorer blocking performance
 - Transmitter increased spectral emissions (output spectrum must meet a mask requirement)
- Noise is characterized in frequency domain

Impact of Synthesizer Noise on Transmitters

Synthesizer noise can be lumped into two categories

- Close-in phase noise: reduces SNR of modulated signal
- Far-away phase noise: creates spectral emissions outside the desired transmit channel

• This is the critical issue for transmitters *M.H. Perrott*

Impact of Remaining Portion of Transmitter

- Power amplifier
 - Nonlinearity will increase out-of-band emission and create harmonic content
- Band select filter
 - Removes harmonic content, but not out-of-band emission

M.H. Perrott

Why is Out-of-Band Emission A Problem?

Near-far problem

- Interfering transmitter closer to receiver than desired transmitter
- Out-of-emission requirements must be stringent to prevent complete corruption of desired signal
 M.H. Perrott

6

Specification of Out-of-Band Emissions

- Maximum radiated power is specified in desired and adjacent channels
 - Desired channel power: maximum is M₀ dBm
 - Out-of-band emission: maximum power defined as integration of transmitted spectral density over bandwidth R centered at midpoint of each channel offset

Example – DECT Cordless Telephone Standard

- Standard for many cordless phones operating at 1.8 GHz
- Transmitter Specifications
 - Channel spacing: W = 1.728 MHz
 - **•** Maximum output power: $M_o = 250 \text{ mW} (24 \text{ dBm})$
 - Integration bandwidth: R = 1 MHz
 - Emission mask requirements

f_{offset} (MHz)	Emission Mask (dBm)
0	$M_0 = 24 \text{ dBm}$
1.728	$M_1 = -8 \text{ dBm}$
3.456	$M_2 = -30 \text{ dBm}$
5.184	$M_3 = -44 \text{ dBm}$

Synthesizer Phase Noise Requirements for DECT

Calculations (see Lecture 16 of MIT OCW 6.976 for details)

Channel Offset	Mask Power	Maximum Synth. Noise Power in Integration BW	Maximum Synth. Phase Noise at Channel Offset
0	24 dBm	set by required transmit SNR	
1.728 MHz	-8 dBm	X ₁ = -29.6 dBc	-92 dBc/Hz
3.456 MHz	-30 dBm	X ₂ = -51.6 dBc	-114 dBc/Hz
5.184 MHz	-44 dBm	X ₃ = -65.6 dBc	-128 dBc/Hz

Graphical display of phase noise mask

M.H. Perrott

Critical Specification for Phase Noise

- Critical specification is defined to be the one that is hardest to meet with an assumed phase noise rolloff
 - Assume synthesizer phase noise rolls off at -20 dB/decade
 - Corresponds to VCO phase noise characteristic
- For DECT transmitter synthesizer
 - Critical specification is -128 dBc/Hz at 5.184 MHz offset

M.H. Perrott

Receiver Blocking Performance

- Radio receivers must operate in the presence of large interferers (called blockers)
- Channel filter plays critical role in removing blockers
 - Passes desired signal channel, rejects interferers

Impact of Nonidealities on Blocking Performance

- Blockers leak into desired band due to
 - Nonlinearity of LNA and mixer (IIP3)
 - Synthesizer phase and spurious noise
- In-band interference cannot be removed by channel filter!
 M.H. Perrott

12

Quantifying Tolerable In-Band Interference Levels

- Digital radios quantify performance with bit error rate (BER)
 - Minimum BER often set at 1e-3 for many radio systems
 - There is a corresponding minimum SNR that must be achieved
- Goal: design so that SNR with interferers is above SNR_{min} M.H. Perrott

Example – DECT Cordless Telephone Standard

- Receiver blocking specifications
 - Channel spacing: W = 1.728 MHz
 - Power of desired signal for blocking test: -73 dBm
 - Minimum bit error rate (BER) with blockers: 1e-3
 - Sets the value of SNR_{min}
 - Perform receiver simulations to determine SNR_{min}
 - Assume SNR_{min} = 15 dB for calculations to follow
 - Strength of interferers for blocking test

f_{offset} (MHz)	Blocker Power (dBm)	Relative Strength
1.728	-58 dBm	$Y_1 = 15 \text{ dB}$
3.456	-39 dBm	$Y_2 = 34 \text{ dB}$
5.184	-33 dBm	$Y_3 = 40 \text{ dB}$

Synthesizer Phase Noise Requirements for DECT

Graphical Display of Required Phase Noise Performance

Mark phase noise requirements at each offset frequency

Calculate critical specification for receive synthesizer

- Critical specification is -117 dBc/Hz at 5.184 MHz offset
 - Lower performance demanded of receiver synthesizer than transmitter synthesizer in DECT applications!

Noise Modeling for Frequency Synthesizers

- PLL has an impact on VCO noise in two ways
 - Adds noise from various PLL circuits
 - Suppresses low frequency VCO noise through PLL feedback
- Focus on modeling the above based on phase deviations
 - Simpler than dealing directly with PLL sine wave output

Phase Deviation Model for Noise Analysis

Model the impact of noise on instantaneous phase

Relationship between PLL output and instantaneous phase

$$out(t) = 2\cos(2\pi f_o t + \Phi_{out}(t))$$

Output spectrum

$$S_{out}(f) = S_{sin}(f) + S_{sin}(f) * S_{\Phi_{out}}$$

M.H. Perrott

Phase Noise Versus Spurious Noise

Described as a spectral density relative to carrier power

$$L(f) = 10 \log(S_{\Phi_{out}}(f)) dBc/Hz$$

Described as tone power relative to carrier power

$$20\log\left(rac{d_{spur}}{2f_{spur}}
ight)~{
m dBc}$$

M.H. Perrott

Sources of Noise in Frequency Synthesizers

- Extrinsic noise sources to VCO
 - Reference/divider jitter and reference feedthrough
 - Charge pump noise

Modeling the Impact of Noise on Output Phase of PLL

 Determine impact on output phase by deriving transfer function from each noise source to PLL output phase

There are a lot of transfer functions to keep track of! *MIT OCW*

21

Simplified Noise Model

Refer all PLL noise sources (other than the VCO) to the PFD output

PFD-referred noise corresponds to the sum of these noise sources referred to the PFD output

M.H. Perrott

Impact of PFD-referred Noise on Synthesizer Output

Transfer function derived using Black's formula

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

M.H. Perrott

Impact of VCO-referred Noise on Synthesizer Output

Transfer function again derived from Black's formula

$$\frac{\Phi_{out}}{e_n} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

M.H. Perrott

A Simpler Parameterization for PLL Transfer Functions

Parameterize Noise Transfer Functions in Terms of G(f)

PFD-referred noise

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{\alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{A(f)}{1 + A(f)} = \frac{2\pi}{\alpha}NG(f)$$

VCO-referred noise

$$\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = 1 - \frac{A(f)}{1 + A(f)} = 1 - G(f)$$
MIT OCW

M.H. Perrott

26

Parameterized PLL Noise Model

- PFD-referred noise is lowpass filtered
- VCO-referred noise is highpass filtered
- Both filters have the same transition frequency values
 - Defined as f_o

M.H. Perrott

Impact of PLL Parameters on Noise Scaling

- PFD-referred noise is scaled by square of divide value and inverse of PFD gain
 - High divide values lead to large multiplication of this noise
- VCO-referred noise is not scaled (only filtered)

M.H. Perrott

Optimal Bandwidth Setting for Minimum Noise

- Optimal bandwidth is where scaled noise sources meet
 - Higher bandwidth will pass more PFD-referred noise
 - Lower bandwidth will pass more VCO-referred noise

Resulting Output Noise with Optimal Bandwidth

- PFD-referred noise dominates at low frequencies
 - Corresponds to close-in phase noise of synthesizer
- VCO-referred noise dominates at high frequencies

Corresponds to far-away phase noise of synthesizer *M.H. Perrott MIT OCW*

Analysis of Charge Pump Noise Impact

We can refer charge pump noise to PFD output by simply scaling it by 1/I_{cp}

$$\frac{\Phi_{out}}{I_{cpn}} = \left(\frac{1}{I_{cp}}\right) \frac{\Phi_{out}}{e_n} = \left(\frac{1}{I_{cp}}\right) \frac{2\pi}{\alpha} NG(f)$$

M.H. Perrott

Calculation of Charge Pump Noise Impact

Contribution of charge pump noise to overall output noise

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N\right)^2 |G(f)|^2 S_{I_{cpn}}(f) + \text{other sources}$$

Need to determine impact of I_{cp} on S_{Icpn}(f)

M.H. Perrott

Impact of Transistor Current Value on its Noise

- Charge pump noise will be related to the current it creates as $S_{I_{cpn}}(f) \propto \frac{\overline{I_d^2}}{\Delta f} = 4kT\gamma g_{do}$
- Recall that g_{do} is the channel resistance at zero V_{ds}
 - At a fixed current density, we have

$$g_{do} \propto W \propto I_d \Rightarrow \overline{I_d^2} \propto I_d$$

M.H. Perrott

Impact of Charge Pump Current Value on Output Noise

Recall

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N\right)^2 |G(f)|^2 S_{I_{cpn}}(f) + \text{other sources}$$

Given previous slide, we can say

$$S_{I_{cpn}}(f) \propto I_{cp}$$

- Assumes a fixed current density for the key transistors in the charge pump as I_{cp} is varied
- Therefore

$$S_{\Phi_{out}}(f) \Big|_{\text{charge pump}} \propto rac{1}{I_{cp}}$$

- Want high charge pump current to achieve low noise
- Limitation set by power and area considerations

Fractional-N Frequency Synthesizers

M.H. Perrott

Bandwidth Constraints for Integer-N Synthesizers

- PFD output has a periodicity of 1/T
 - 1/T = reference frequency
- Loop filter must have a bandwidth << 1/T</p>
 - PFD output pulses must be filtered out and average value extracted

Closed loop PLL bandwidth often chosen to be a factor of ten lower than 1/T
Bandwidth Versus Frequency Resolution

Frequency resolution set by reference frequency (1/T)

Higher resolution achieved by lowering 1/T

M.H. Perrott

Increasing Resolution in Integer-N Synthesizers

Use a reference divider to achieve lower 1/T

Leads to a low PLL bandwidth (< 20 kHz here) M.H. Perrott

The Issue of Noise

Lower 1/T leads to higher divide value

Increases PFD noise at synthesizer output M.H. Perrott

Modeling PFD Noise Multiplication

Influence of PFD noise seen in above model

 PFD spectral density multiplied by N² before influencing PLL output phase noise

High divide values is high phase noise at low frequencies

Fractional-N Frequency Synthesizers

- Break constraint that divide value be integer
 - Dither divide value dynamically to achieve fractional values
 - Frequency resolution is now arbitrary regardless of 1/T
- Want high 1/T to allow a high PLL bandwidth

A Nice Dithering Method: Sigma-Delta Modulation

CW 42

Linearized Model of Sigma-Delta Modulator

Composed of two transfer functions relating input and noise to output

- Signal transfer function (STF)
 - Filters input (generally undesirable)
- Noise transfer function (NTF)

Filters (i.e., shapes) noise that is assumed to be white
 MIT OCW

Example: Cutler Sigma-Delta Topology

- Output is quantized in a multi-level fashion
- Error signal, e[k], represents the quantization error
- Filtered version of quantization error is fed back to input
 - H(z) is typically a highpass filter whose first tap value is 1
 - i.e., $H(z) = 1 + a_1 z^{-1} + a_2 z^{-2} \cdots$
 - H(z) 1 therefore has a first tap value of 0

Feedback needs to have delay to be realizable
 M.H. Perrott

Linearized Model of Cutler Topology

Represent quantizer block as a summing junction in which r[k] represents quantization error

Note:

$$e[k] = y[k] - u[k] = (u[k] + r[k]) - u[k] = r[k]$$

It is assumed that r[k] has statistics similar to white noise

This is a key assumption for modeling – often not true!

M.H. Perrott

Calculation of Signal and Noise Transfer Functions

Calculate using Z-transform of signals in linearized model Y(z) = U(z) + R(z)

$$= X(z) + (H(z) - 1)E(z) + R(z)$$

$$= X(z) + (H(z) - 1)R(z) + R(z)$$

$$= X(z) + H(z)R(z)$$

- **•** NTF: $H_n(z) = H(z)$
- **STF:** $H_s(z) = 1$

M.H. Perrott

A Common Choice for H(z)

M.H. Perrott

Example: First Order Sigma-Delta Modulator

• Choose NTF to be $H_n(z) = H(z) = 1 - z^{-1}$

Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

Example: Second Order Sigma-Delta Modulator

Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

49

Example: Third Order Sigma-Delta Modulator

Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

Observations

- Low order Sigma-Delta modulators do not appear to produce "shaped" noise very well
 - Reason: low order feedback does not properly "scramble" relationship between input and quantization noise
 - Quantization noise, r[k], fails to be white
- Higher order Sigma-Delta modulators provide much better noise shaping with fewer spurs
 - Reason: higher order feedback filter provides a much more complex interaction between input and quantization noise

Warning: Higher Order Modulators May Still Have Tones

- Quantization noise, r[k], is best whitened when a "sufficiently exciting" input is applied to the modulator
 - Varying input and high order helps to "scramble" interaction between input and quantization noise
- Worst input for tone generation are DC signals that are rational with a low valued denominator
 - Examples (third order modulator):

52

Cascaded Sigma-Delta Modulator Topologies

- Achieve higher order shaping by cascading low order sections and properly combining their outputs
- Advantage over single loop approach
 - Allows pipelining to be applied to implementation
 - High speed or low power applications benefit
- Disadvantages
 - Relies on precise matching requirements when combining outputs (not a problem for digital implementations)

Requires multi-bit quantizer (single loop does not)
M.H. Perrott

MASH topology

- Cascade first order sections
- Combine their outputs after they have passed through digital differentiators

Calculation of STF and NTF for MASH topology (Step 1)

Individual output signals of each first order modulator

$$y_1(z) = x(z) - (1 - z^{-1})r_1(z)$$

$$y_2(z) = r_1(z) - (1 - z^{-1})r_2(z)$$

$$y_3(z) = r_2(z) - (1 - z^{-1})r_3(z)$$

$$\begin{array}{rcl} & & y_1(z) \\ + & (1-z^{-1})y_2(z) \\ + & (1-z^{-1})^2y_2(z) \\ \hline = & x(z) - (1-z^{-1})^3r_3(z) \end{array}$$

au (~)

M.H. Perrott

Calculation of STF and NTF for MASH topology (Step 1)

Overall modulator behavior

$$y(z) = x(z) - (1 - z^{-1})^3 r_3(z)$$

- NTF: $H_n(z) = (1 - z^{-1})^3$

Sigma-Delta Frequency Synthesizers

- Use Sigma-Delta modulator rather than accumulator to perform dithering operation
 - Achieves much better spurious performance than classical fractional-N approach

M.H. Perrott

Background: The Need for A Better PLL Model

- Classical PLL model
 - Predicts impact of PFD and VCO referred noise sources
 - Does not allow straightforward modeling of impact due to divide value variations

This is a problem when using fractional-N approach
 M.H. Perrott

A PLL Model Accommodating Divide Value Variations

See derivation in Perrott et. al., "A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers ...", JSSC, Aug 2002

Parameterized Version of New Model

M.H. Perrott

Spectral Density Calculations

• Case (a): $S_y(f) = |H(f)|^2 S_x(f)$

• Case (b): $S_y(e^{j2\pi fT}) = |H(e^{j2\pi fT})|^2 S_x(e^{j2\pi fT})$

Case (c): $S_y(f) = \frac{1}{T} |H(f)|^2 S_x(e^{j2\pi fT})$

Example: Calculate Impact of Ref/Divider Jitter (Step 1)

- Assume jitter is white
 - i.e., each jitter value independent of values at other time instants
- Calculate spectra for discrete-time input and output
 - Apply case (b) calculation

$$S_{\Delta t_{jit}}(e^{j2\pi fT}) = \beta^2 \quad \Rightarrow \quad S_{\Phi_{jit}}(e^{j2\pi fT}) = \left|\frac{2\pi}{T}\right|^2 \beta^2$$

M.H. Perrott

62

Example: Calculate Impact of Ref/Divider Jitter (Step 2)

Compute impact on output phase noise of synthesizer

We now apply case (c) calculation

$$S_{\Phi_n}(f) = \frac{1}{T} |TN_{nom}G(f)|^2 S_{\Phi_{jit}}(e^{j2\pi fT})$$
$$= \frac{1}{T} |TN_{nom}G(f)|^2 \left|\frac{2\pi}{T}\right|^2 \beta^2$$

Note that G(f) = 1 at DC

M.H. Perrott

Now Consider Impact of Divide Value Variations

Divider Impact For Classical Vs Fractional-N Approaches

M.H. Perrott

Focus on Sigma-Delta Frequency Synthesizer

- Divide value can take on fractional values
 - Virtually arbitrary resolution is possible
- PLL dynamics act like lowpass filter to remove much of the quantization noise

Quantifying the Quantization Noise Impact

- Calculate by simply attaching Sigma-Delta model
 - We see that quantization noise is integrated and then lowpass filtered before impacting PLL output

M.H. Perrott

A Well Designed Sigma-Delta Synthesizer

- Order of G(f) is set to equal to the Sigma-Delta order
 - Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth
- Bandwidth of G(f) is set low enough such that synthesizer noise is dominated by intrinsic PFD and VCO noise *M.H. Perrott*

68

Impact of Increased PLL Bandwidth

- Allows more PFD noise to pass through
- Allows more Sigma-Delta noise to pass through
- Increases suppression of VCO noise

Impact of Increased Sigma-Delta Order

- PFD and VCO noise unaffected
- Sigma-Delta noise no longer attenuated by G(f) such that a -20 dB/dec slope is achieved above its bandwidth