MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776 High Speed Communication Circuits Lecture 4 S-Parameters and Impedance Transformers

Massachusetts Institute of Technology February 10, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

What Happens When the Wave Hits a Boundary?

Reflections can occur

What Happens When the Wave Hits a Boundary?

- At boundary
 - Orientation of H-field flips with respect to E-field
 - Current reverses direction with respect to voltage

What Happens At The Load Location?

Voltage and currents at load are ratioed according to the load impedance

Relate to Characteristic Impedance

From previous slide

$$\frac{V_i + V_r}{I_i - I_r} = \frac{V_i}{I_i} \left(\frac{1 + V_r / V_i}{1 - I_r / I_i} \right) = Z_L$$

Voltage and current ratio in transmission line set by it characteristic impedance

$$\frac{V_i}{I_i} = \frac{V_r}{I_r} = Z_o \quad \Rightarrow \quad \frac{I_r}{I_i} = \frac{V_r}{V_i}$$

Substituting:

$$Z_o\left(\frac{1+V_r/V_i}{1-V_r/V_i}\right) = Z_L$$

Define Reflection Coefficient

Definition:
$$\Gamma_L = \frac{V_r}{V_i}$$

- **No reflection if** $\Gamma_L = 0$
- Relation to load and characteristic impedances

$$Z_o\left(\frac{1+\Gamma_L}{1-\Gamma_L}\right) = Z_L$$

Alternate expression

$$\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o}$$

• No reflection if $Z_L = Z_o$

H.-S. Lee & M.H. Perrott

Parameterization of High Speed Circuits/Passives

- Circuits or passive structures are often connected to transmission lines at high frequencies
 - How do you describe their behavior?

Calculate Response to Input Voltage Sources

Assume source impedances match their respective transmission lines

Calculate Response to Input Voltage Sources

- Sources create incident waves on their respective transmission line
- Circuit/passive network causes
 - Reflections on same transmission line
 - Feedthrough to other transmission line

Calculate Response to Input Voltage Sources

- Reflections on same transmission line are parameterized by Γ_L
 - Note that Γ_L is generally different on each side of the circuit/passive network

S-Parameters – Definition

- Model circuit/passive network using 2-port techniques
 - Similar idea to Thevenin/Norton modeling

Defining equations:

$$\frac{V_{r1}}{\sqrt{Z_1}} = S_{11} \frac{V_{i1}}{\sqrt{Z_1}} + S_{12} \frac{V_{i2}}{\sqrt{Z_2}}$$
$$\frac{V_{r2}}{\sqrt{Z_2}} = S_{21} \frac{V_{i1}}{\sqrt{Z_1}} + S_{22} \frac{V_{i2}}{\sqrt{Z_2}}$$

S-Parameters – Calculation/Measurement

H.-S. Lee & M.H. Perrott

Note: Alternate Form for S₂₁ and S₁₂

$$\frac{\text{set } V_{in2} = 0}{\Rightarrow S_{11} = \frac{V_{r1}}{V_{i1}}} = \Gamma_{L1}$$
$$\Rightarrow S_{21} = 2\sqrt{\frac{Z_1}{Z_2}} \left(\frac{V_{r2}}{V_{in1}}\right)$$

$$set V_{in1} = 0$$

$$\Rightarrow S_{22} = \frac{V_{r2}}{V_{i2}} = \Gamma_{L2}$$

$$\Rightarrow S_{12} = 2\sqrt{\frac{Z_2}{Z_1}} \left(\frac{V_{r1}}{V_{in2}}\right)$$

H.-S. Lee & M.H. Perrott

Block Diagram of S-Parameter 2-Port Model

- Key issue two-port is parameterized with respect to the left and right side load impedances (Z₁ and Z₂)
 - Need to recalculate S_{11} , S_{21} , etc. if Z_1 or Z_2 changes
 - **Typical assumption is that** $Z_1 = Z_2 = 50$ Ohms

S-Parameter Calculations – Example 1

Derive S-Parameter 2-Port

H.-S. Lee & M.H. Perrott

S-Parameter Calculations – Example 2

Same as before:

$$\Rightarrow S_{11} = \Gamma_1 \qquad \Rightarrow S_{22} = \Gamma_2$$

$$\Rightarrow S_{21} = \sqrt{\frac{Z_1}{Z_2}} (1 + \Gamma_1) \qquad \Rightarrow S_{12} = \sqrt{\frac{Z_2}{Z_1}} (1 + \Gamma_2)$$

But now:

$$\Gamma_1 = \frac{Z_2 ||(1/sC) - Z_1|}{Z_2 ||(1/sC) + Z_1|} \qquad \Gamma_2 = \frac{Z_1 ||(1/sC) - Z_2|}{Z_1 ||(1/sC) + Z_2|}$$

MIT OCW

S-Parameter Calculations – Example 3

- The S-parameter calculations are now more involved
 - Network now has more than one node
- This is a homework problem

Impedance Transformers

H.-S. Lee & M.H. Perrott

Matching for Voltage versus Power Transfer

- Consider the voltage divider network Given the Thevenin equivalent source with V_s and R_s, how do we deliver maximum voltage or power to the load?
- For maximum voltage transfer

$$R_L \rightarrow \infty \Rightarrow V_{out} \rightarrow V_s$$

For maximum power transfer

$$R_L = R_S \Rightarrow P_{out} = \frac{|V_{out}|^2}{R_L} = \frac{|V_s|^2}{4R_S}$$

Which one do we want?

Note: Maximum Power Transfer Derivation

- Formulation: R_s is given, R_L is variable $P_{out} = I^2 R_L = \left(\frac{V_s}{R_S + R_L}\right)^2 R_L = \frac{R_L}{(R_S + R_L)^2} V_s^2$
- Take the derivative and set it to zero

$$\frac{dP_{out}}{dR_L} = R_L(-2)(R_S + R_L)^{-3} + (R_S + R_L)^{-2} = 0$$
$$\Rightarrow 2R_L = R_S + R_L \Rightarrow R_L = R_S$$

Voltage Versus Power

- For most communication circuits, voltage (or current) is the key signal for detection
 - Phase information is important
 - Power is ambiguous with respect to phase information

- For high speed circuits with transmission lines, achieving maximum power transfer is important
 - Maximum power transfer coincides with having zero reflections (i.e., $\Gamma_L = 0$)

Can we ever win on both issues?

Broadband Impedance Transformers

Consider placing an ideal transformer between source and load
In

Transformer basics (passive, zero loss)

1) $V_{out} = NV_{in}$ $\Rightarrow V_{in}I_{in} = V_{out}I_{out}$ From (1) and (2): $V_{in}I_{in} = NV_{in}I_{out}$ $\Rightarrow I_{out} = \frac{I_{in}}{N}$

Transformer input impedance

$$R_{in} = \frac{V_{in}}{I_{in}} = \frac{V_{out}/N}{NI_{out}} = \frac{1}{N^2}R_L$$

H.-S. Lee & M.H. Perrott

What Value of N Maximizes Voltage Transfer?

Derive formula for V_{out} versus V_{in} for given N value

$$V_{out} = NV_{in} = N \frac{R_{in}}{R_s + R_{in}} V_s = N \frac{R_L/N^2}{R_s + R_L/N^2} V_s$$
$$= N \frac{R_L}{R_L + N^2 R_s} V_s$$

Take the derivative and set it to zero

$$\frac{dV_{out}}{dN} = NR_L(-1)(R_L + N^2 R_S)^{-2} 2NR_s + R_L(R_L + N^2 R_S)^{-1} = 0$$

$$\Rightarrow -2N^2 R_s (R_L + N^2 R_S)^{-2} + (R_L + N^2 R_S)^{-1} = 0$$

$$\Rightarrow -2N^2 R_s = R_L + N^2 R_S \Rightarrow N^2 = \frac{R_L}{R_s}$$

What is the Input Impedance for Max Voltage Transfer?

We know from basic transformer theory that input impedance into transformer is

$$R_{in} = \frac{1}{N^2} R_L$$

We just learned that, to maximize voltage transfer, we must set the transformer turns ratio to

$$N^2 = \frac{R_L}{R_s}$$

Put them together

$$R_{in} = \frac{1}{N^2} R_L = \frac{1}{R_L / R_s} R_L = R_s !!$$

So, N should be set for max power transfer into transformer to achieve the maximum voltage transfer at the load. This also ensures no reflection.

Benefit of Impedance Matching with Transformers

Transformers allow maximum voltage and power transfer relationship to coincide

Turns ratio for max power/voltage transfer

$$N^2 = \frac{R_L}{R_s}$$

Resulting voltage gain (can exceed one!)

$$V_{out} = NV_{in} = N\left(\frac{1}{2}V_s\right) = \sqrt{\frac{R_L}{R_s}}\left(\frac{1}{2}V_s\right)$$

H.-S. Lee & M.H. Perrott

Problems with True Transformers

- It's difficult to realize a transformer with good performance over a wide frequency range
 - Magnetic materials have limited frequency response (both low and high frequency limits)
 - Inductors have self-resonant frequencies, losses, and mediocre coupling to other inductors without magnetic material
- For wireless applications, we only need transformers that operate over a small frequency range (except UWB)
 - Can we take advantage of this?: use 'impedance transformer" instead of a true transformer

Consider Resonant Circuits (Chap. 3 (2nd ed.) or 4 (1st ed.) of Text)

Key insight: at resonance Z_{in} becomes purely real despite the presence of reactive elements

H.-S. Lee & M.H. Perrott

Equivalence of Series and Parallel RL Circuits

- Equate real and imaginary parts of the left and right expressions (so that Z_{in} is the same for both)
 - Also equate Q values

$$R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$$
$$L_p = L_s\left(\frac{Q^2 + 1}{Q^2}\right) \approx L_s \text{ (for } Q \gg 1)$$

H.-S. Lee & M.H. Perrott

Series-Parallel Equivalence Analysis

H.-S. Lee & M.H. Perrott

Equivalence of Series and Parallel RC Circuits

Equate real and imaginary parts of the left and right expressions (so that Z_{in} is the same for both)

Cp

Also equate Q values

$$R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$$
$$C_p = C_s \left(\frac{Q^2}{Q^2 + 1}\right) \approx C_s \text{ (for } Q \gg 1)$$

H.-S. Lee & M.H. Perrott

A Narrowband Impedance Transformer: The L Match

 $Z_{in} = R_p = (1 + Q^2)R_s \approx Q^2 R_s$ (purely real)

Transformer steps up impedance!

H.-S. Lee & M.H. Perrott

Alternate Implementation of L Match

 $R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$ $C_p = C_s\left(\frac{Q^2}{Q^2 + 1}\right) \approx C_s \text{ (for } Q \gg 1)$

$$Z_{in} = R_s = \frac{R_p}{1+Q^2} \approx \frac{R_p}{Q^2}$$
 (purely real)

Transformer steps down impedance!

H.-S. Lee & M.H. Perrott

At resonance

The π Match

Combines two L sections

Provides an extra degree of freedom for choosing component values for a desired transformation ratio

The T Match

Also combines two L sections

Again, benefit is in providing an extra degree of freedom in choosing component values

Tapped Capacitor as a Transformer

• To first order:

$$\frac{R_{in}}{R_L} \approx \left(\frac{C_1 + C_2}{C_1}\right)^2$$

- Useful in VCO design
- See Chap. 3 (2nd ed.) or 4 (1st ed.) of Text