## MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

## 6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers

#### Massachusetts Institute of Technology February 24, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

## High Frequency, Broadband Amplifiers

The first thing that you typically do to the input signal is amplify it
package



#### Function

- Boosts signal levels to acceptable values
- Provides reverse isolation
- Key performance parameters
  - Gain, bandwidth, noise, linearity

## Gain-bandwidth Trade-off

#### Common-source amplifier example



C<sub>tot</sub>: total capacitance at output node

DC gain  $A = g_m R_L$ 3 dBbandwidth  $\omega_h = \frac{1}{R_L C_{tot}}$ Gain-bandwidth  $GB = \frac{g_m}{C_{tot}}$ 

## Gain-bandwidth Trade-off

#### Common-source amplifier example



- Given the 'origin pole' g<sub>m</sub>/C<sub>tot</sub>, higher bandwidth is achieved only at the expense of gain
- The origin pole g<sub>m</sub>/C<sub>tot</sub> must be improved for better GB

H.-S. Lee & M.H. Perrott

## Gain-bandwidth Improvement

- How do we improve g<sub>m</sub>/C<sub>tot</sub>?
- Assume that amplifier is loaded by an identical amplifier and fixed wiring capacitance is negligible

Since 
$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)$$
 and  $C_{tot} \propto W$   
 $\frac{g_m}{C_{tot}} \propto \frac{V_{GS} - V_T}{L}$ 

- To achieve maximum GB in a given technology, use minimum gate length, bias the transistor at maximum V<sub>GS</sub> - V<sub>T</sub>
- When velocity saturation is reached, higher V<sub>GS</sub> V<sub>T</sub> does not give higher g<sub>m</sub>
- In case fixed wiring capacitance is large, power consumption must be also considered

#### **Gain-bandwidth Observations**

- Constant gain-bandwidth is simply the result of singlepole role off – it's not fundamental!
- It implies a single-pole frequency response may not be the best for obtaining gain and bandwidth simultaneously
- Single-pole role off is necessary for some circuits, e.g. for stability, but not for broad-band amplifiers

## Assumptions (for now) for Bandwidth Analysis

- Assume for now that amplifier is loaded by an identical amplifier and by fixed wiring capacitance
- Assume amplifier is driven by an ideal voltage source for now



- Intrinsic performance
  - Defined as the bandwidth achieved for a given gain when C<sub>fixed</sub> is negligible
  - Amplifier approaches intrinsic performance as its device sizes (and current) are increased
- In practice, point of diminishing return for bandwidth vs. size (and power) of amplifier is roughly where C<sub>in</sub>+C<sub>out</sub> = C<sub>fixed</sub>

## The Miller Effect

Concerns impedances that connect from input to output of an amplifier



Input impedance:

$$Z_{in} = \frac{V_{in}}{(V_{in} - V_{out})/Z_f} = \frac{Z_f}{1 - A_v}$$

Output impedance:

$$Z_{out} = \frac{V_{out}}{(V_{out} - V_{in})/Z_f} = \frac{Z_f}{1 - 1/A_v} \approx Z_f \text{ for } |A_v| \gg 1$$

H.-S. Lee & M.H. Perrott

## **Example: Miller Capacitance**

- Consider C<sub>qd</sub> in the MOS device as C<sub>f</sub>
  - Assume gain is negative



Input capacitance:

$$Z_{in} = \frac{1/(sC_f)}{1+|A_v|} = \frac{1}{sC_f(1+|A_v|)}$$

#### Looks like much larger capacitance by $|A_v|$

## **Example: Miller Capacitance**



Output impedance:

$$Z_{out} = \frac{1/(sC_f)}{1+1/|A_v|} = \frac{1}{sC_f(1+1/|A_v|)} \approx \frac{1}{sC_f}$$

# This makes sense because the input of the amplifier is 'virtual ground' if gain is large

H.-S. Lee & M.H. Perrott

#### Amplifier Example – CMOS Inverter

- The Miller effect gives a quick way to estimate the bandwidth of an amplifer without solving node equations: intuition!
- Assume that we set V<sub>bias</sub> the amplifier nominal output is such that NMOS and PMOS transistors are all in saturation
  - Note: this topology VERY sensitive to V<sub>bias</sub> : some feedback biasing would be required (6.301)



#### **Transfer Function of CMOS Inverter**



H.-S. Lee & M.H. Perrott

#### Add Resistive Feedback?



#### We Can Still Do Better

- We are fundamentally looking for high g<sub>m</sub> to capacitance ratio to get the highest bandwidth
  - PMOS degrades this ratio
  - Gate bias voltage is constrained
- However, when C<sub>fixed</sub> is dominant and power consumption is important, the PMOS increases g<sub>m</sub> without additional power
- On the other hand, below velocity saturation, higher g<sub>m</sub> can be achieved by biasing the gate of M<sub>1</sub> close to V<sub>dd</sub> instead of using PMOS



## Take PMOS Out of the Signal Path



- Advantages
  - PMOS gate no longer loads the signal
  - NMOS device can be biased at a higher voltage (higher g<sub>m</sub> up to velocity sat. limit)

#### Issue

- PMOS is not an efficient current provider (I<sub>d</sub>/drain cap C<sub>ad</sub>+C<sub>db</sub>)
  - Drain cap close in value to C<sub>as</sub>
- Signal path is loaded by cap of R<sub>f</sub> and drain cap of PMOS

## **Shunt-Series Amplifier**



- Use resistors to control the bias, gain, and input/output impedances
  - Improves accuracy over process and temp variations
- Issues
  - Degeneration of M<sub>1</sub> lowers slew rate for large signal applications (such as limit amps)
  - There are better high speed approaches the advantage of this one is simply accuracy

## Shunt-Series Amplifier – Analysis Snapshot



## NMOS Load Amplifier



Gain set by the relative sizing of  $M_1$  and  $M_2$ 

 $M_1: I_{d1} = (1/2)\mu_n C_{ox} (W_1/L_1) (V_{IN} - V_T)^2$  $I_{d1}$  $I_{d2}$  $M_2: I_{d2} = (1/2)\mu_n C_{ox} (W_2/L_2) (V_{dd} - V_{out} - V_T)^2$ 

$$\Rightarrow V_{out} = -AV_{IN} + V_{dd} + (A - 1)V_T | \text{ where } A = \sqrt{\frac{W_1/L_1}{W_2/L_2}}$$
  
(V\_{IN} = V\_{in} + V\_{bias})

1 T

## **Design of NMOS Load Amplifier**



- Size transistors for gain and speed
  - Choose minimum L for maximum speed
  - Choose ratio of W<sub>1</sub> to W<sub>2</sub> to achieve appropriate gain

## Advantage/Disadvantages of NMOS Load Amplifier

- Gain is well controlled despite process variations
- NMOS is not a low parasitic load
  - C<sub>gs</sub> of M2 loads the output
- Biasing Problem: V<sub>T</sub> of M<sub>2</sub> lowers the gate bias voltage of the next stage (thus lowering its achievable f<sub>t</sub>)
  - Severely hampers performance when amplifier is cascaded
  - One paper addressed this issue by increasing V<sub>dd</sub> of NMOS load (see Sackinger et. al., "A 3-GHz 32-dB CMOS Limiting Amplifier for SONET OC-48 receivers", JSSC, Dec 2000)

## **Resistor Loaded Amplifier (Unsilicided Poly)**



- This is the fastest non-enhanced amplifier topology
  - Unsilicided poly is a low parasitic load (i..e, has a good current to capacitance ratio)
  - Output can go near V<sub>dd</sub>
    - Allows following stage to achieve high  $f_t$  , but at the cost of gain (max gain  $\propto V_{R_l}$  )
  - Linear settling behavior (in contrast to NMOS load)

H.-S. Lee & M.H. Perrott

#### **Gain Limitations in Resistor Loaded Amplifier**

$$g_m = \frac{dI_d}{dV_{gs}} = \frac{2I_d}{V_{GS} - V_T}$$
$$A = g_m R_L = \frac{2I_d R_L}{V_{GS} - V_T} = \frac{2V_{R_L}}{V_{GS} - V_T}$$
$$A_{MAX} = \frac{2V_{dd}}{V_{GS} - V_T}$$

• Want high  $V_{GS} - V_T$  for high bandwidth, but this reduces gain. With low V<sub>dd</sub> gain is very limited.

H.-S. Lee & M.H. Perrott

## Implementation of Resistor Loaded Amplifier

Typically implement using differential pairs



#### Benefits

- Bias stability without feedback
- Common-mode rejection
- Negative
  - More power than single-ended version

#### **Open-Circuit Time Constants**

- The Miller capacitance analysis is a reasonably good method, but is somewhat limited in applicable topologies
- the OCT method is more general and often gives more insights
- Systematic, intuitive method to determine bandwidth of amplifiers
- Often gives fairly accurate estimates of bandwidth if there is a dominant pole
- Points to the bandwidth *bottleneck*: this is the *real* value of the OCT method!
- Limitation: fails in RF circuits with zero enhancements or inductors
- In typical broadband amplifiers, the OCT estimate is too pessimistic due to multiple poles at around similar frequencies

#### **Open Circuit Time Constant Method**

Assumptions: No zero near or  $\omega_h$ Zero well below wh is handled by treating corresponding capacitor as sort circuit Negative real poles only (complex conjugate poles with low Q reduces accuracy of estimation only moderately) No inductors

$$A(s) = \frac{V_o}{V_i} = \frac{a_0}{(1 + \tau_1 s)(1 + \tau_2 s)\cdots(1 + \tau_n s)}$$
$$= \frac{a_0}{1 + (\tau_1 + \tau_2 + \cdots + \tau_n)s\cdots\tau_1\tau_2\cdots\tau_n s^n}$$

If we ignore the higher order terms

$$\omega_h = 2\pi f_h \approx \frac{1}{\tau_1 + \tau_2 + \dots + \tau_n} = \frac{1}{\sum_{i=1}^n \tau_i}$$

## **OCT Method, Continued**

#### It can be shown

$$\sum_{i=1}^{n} \tau_i = \sum_{j=1}^{n} \tau_{jo}$$

Thus  $\omega_h \approx \frac{1}{\sum\limits_{j=1}^n \tau_{jo}}$ 

where  $\tau_{jo} = R_{jo}C_j$  :open-circuit time constants

# The open-circuit time constants can be found without node equations, often by inspection

H.-S. Lee & M.H. Perrott

## **OCR Calculation**

Let's consider an arbitrary circuit with resistors, dependent sources, and n capacitors (no inductors!). Redraw the circuit to pull capacitors out around the perimeter.



#### **OCT's for CS Amplifier**



By inspection: 
$$R_{1o} = R_S, \ \tau_{1o} = R_S C_{gs}$$
  
 $R_{3o} = R_L, \ \tau_{3o} = R_L C_L$ 

#### It takes some work to figure $R_{2o}$

H.-S. Lee & M.H. Perrott

## **OCT's for CS Amplifier**



$$v_{gs} = i_t R_S$$

$$-v_{o} = (i_{t} + g_{m}v_{gs})R_{L} = i_{t}(1 + g_{m}R_{S})R_{L}$$

$$v_{t} = v_{gs} - v_{o} = i_{t}(1 + \frac{R_{S}}{R_{L}} + g_{m}R_{S})R_{L}$$

$$R_{2o} = \frac{v_{t}}{i_{t}} = (1 + \frac{R_{S}}{R_{L}} + g_{m}R_{S})R_{L}$$

$$\tau_{2o} = C_{gd}(1 + \frac{R_{S}}{R_{L}} + g_{m}R_{S})R_{L}$$
H.-S. Lee & M.H. Perrott

$$R_{1o} = R_S, \ \tau_{1o} = R_S C_{gs}$$

$$R_{3o} = R_L, \ \tau_{3o} = R_L C_L$$

$$R_{2o} = \frac{v_t}{i_t} = (1 + \frac{R_S}{R_L} + g_m R_S) R_L$$

$$\tau_{2o} = C_{gd} (1 + \frac{R_S}{R_L} + g_m R_S) R_L = C_{gd} (1 + \frac{R_L}{R_S} + g_m R_L) R_S$$

- If R<sub>s</sub>=0, then τ<sub>10</sub>=0,τ<sub>20</sub>=C<sub>gd</sub>R<sub>L</sub>, and τ<sub>30</sub>=C<sub>L</sub>R<sub>L</sub> so R<sub>L</sub> determines the bandwidth
- Having individual OCT values identifies the bandwidth bottleneck and suggests a game plan
- Note:for cascased amplifiers, C<sub>L</sub> does not include Miller cap of the next stage. Instead, τ<sub>20</sub> corresponding to the next stage Miller cap is separately calculated

#### Cascode to Improve Bandwidth



H.-S. Lee & M.H. Perrott

#### Cascode

- Improves bandwidth in a single-stage amplifier
- Problem in cascading:
  - Bias point: Reduces  $\omega_t$  of the next stage. PMOS SF is a possibility but low  $g_m/C$  ratio is a drawback.