MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776

High Speed Communication Circuits and Systems Lecture 8 Broadband Amplifiers, Continued

Massachusetts Institute of Technology March 1, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott We often assume that MOS current is a quadratic function of V_{gs}:

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T)^2$$

It can be shown, more generally

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T) V_{dsat,l}$$

- V_{dsat,I} corresponds to the saturation voltage at a given length, which we often refer to as ΔV
- In strong inversion below velocity saturation: $V_{dsat,l} \approx V_{gs} - V_T$

which gives the quardatic equation above.

Velocity Saturation Continued

It can be shown that

$$V_{dsat,l} \approx \frac{(V_{gs} - V_T)(LE_{sat})}{(V_{gs} - V_T) + (LE_{sat})} = (V_{gs} - V_T)||(LE_{sat})$$

E_{sat}: electric field (lateral) at which velocity saturation occurs

If
$$\frac{V_{gs} - V_T}{L} << E_{sat}$$
 then $V_{dsat,l} \approx V_{gs} - V_T$

If (V_{gs}-V_T)/L approaches E_{sat} in value, then the quadratic equation is no longer valid

- If $\frac{V_{gs} - V_T}{L} >> E_{sat}$ then $V_{dsat,l} \approx LE_{sat} = constant$ and the I-V characteristic becomes linear

Analytical Device Modeling in Velocity Saturation

If L small (as in modern devices), than velocity saturation will impact us for even moderate values of V_{gs}-V_T

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T) [(V_{gs} - V_T) || (LE_{sat})]$$

$$\Rightarrow I_D \approx \frac{\mu_n C_{ox}}{2} W (V_{gs} - V_T) E_{sat}$$

- Current increases linearly with V_{gs}-V_T!
- Transconductance in velocity saturation:

$$g_m = \frac{dI_d}{dV_{gs}} \Rightarrow g_m = \frac{\mu_n C_{ox}}{2} W E_{sat}$$

No longer a function of V_{gs}- higer V_{gs} increases I_d, but little increase in g_m: wasted power

Example: Current Versus Voltage for 0.18µ Device

H.-S. Lee & M.H. Perrott

Example: G_m Versus Voltage for 0.18µ Device

Example: G_m Versus Current Density for 0.18µ Device

How Do We Design the Amplifier?

- Highly inaccurate to assume square law behavior
- We will now introduce a numerical procedure based on the simulated g_m curve of a transistor
 - A look at transconductance:

$$g_m = \frac{dI_d}{dV_{gs}} \mid_{I_d} = \frac{dWI_{den}}{dV_{gs}} = W \frac{dI_{den}}{dV_{gs}} \mid_{I_{den}}$$

- Observe that if we keep the current density (I_{den}=I_d/W) constant, then g_m scales directly with W
 - This is independent of bias regime
- We can therefore relate g_mof devices with different widths given that they have the same current density

$$g_m(W, I_{den}) = \frac{W}{W_o} g_m(W_o, I_{den})$$

A Numerical Design Procedure for Resistor Amp – Step 1

$$\Rightarrow g_m(W, I_{bias}/W) = 2\frac{A}{V_{sw}}W\left(\frac{I_{bias}}{W}\right)$$

Can we relate this formula to a g_m curve taken from a device of width W_o ?

H.-S. Lee & M.H. Perrott

A Numerical Design Procedure for Resistor Amp – Step 2

We now know:

(1)
$$g_m(W, I_{bias}/W) = 2 \frac{A}{V_{sw}} W \left(\frac{I_{bias}}{W}\right)$$

(2) $g_m(W, I_{den}) = \frac{W}{W_o} g_m(W_o, I_{den})$

Substitute (2) into (1)

$$\frac{W}{W_o}g_m(W_o, I_{bias}/W) = 2\frac{A}{V_{sw}}W\left(\frac{I_{bias}}{W}\right)$$

$$\Rightarrow g_m(W_o, I_{den}) = 2W_o \frac{A}{V_{sw}} I_{den}$$

The above expression allows us to design the resistor loaded amp based on the g_m curve of a representative transistor of width W_o!

Example: Design for Swing of 1 V, Gain of 1 and 2

H.-S. Lee & M.H. Perrott

Fransconductance (milliAmps/Volts)

For gain of 1, current density = **250 μΑ/μm**

- For gain of 2, current density = **115 μΑ/μm**
- Note that current density reduced as gain increases!
 - f, effectively decreased

MIT OCW

Example (Continued)

- Knowledge of the current density allows us to design the amplifier
 - **Recall** $V_{sw} = 2I_{bias}R$
 - Free parameters are W, I_{bias}, and R (L assumed to be fixed)
- Given $I_{den} = 115 \ \mu A/\mu m$ (Swing = 1V, Gain = 2)
 - If we choose $I_{bias} = 300 \ \mu A$

$$I_{den} = \frac{I_{bias}}{W} \Rightarrow W = \frac{300}{115} = 2.6\mu m$$
$$V_{sw} = 2I_{bias}R \Rightarrow R = \frac{1}{2 \cdot 300 \times 10^{-6}} = 1.67k\Omega$$

Note that we could instead choose W or R, and then calculate the other parameters

How Do We Choose I_{bias} For High Bandwidth?

- Pick current density just below velocity saturation
- As you increase I_{bias}, the size of transistors also increases to keep a constant current density
 - The size of C_{in} and C_{out} increases relative to C_{fixed}
- To achieve the highest bandwidth, size the devices (i.e., choose the value for I_{bias}), such that
 - C_{in}+C_{out} dominates over C_{fixed}
- However, C_{in}+C_{out}=C_{fixed} is roughly the point of diminishing return because the bandwidth improvement becomes marginal while power and area continue to grow proportionally
- Thus, C_{in}+C_{out}=C_{fixed} is the most efficient point

Resistor Loaded Amplifier (Unsilicided Poly)

- We decided this was the fastest non-enhanced amplifier
 - Can we go faster? (i.e., can we enhance its bandwidth?)
- We will look at the following
 - Reduction of Miller effect on C_{qd}
 - Shunt, series, and zero peaking
 - Distributed amplification

Miller Effect on C_{gd} Is Significant

- C_{gd} is quite significant compared to C_{gs}
 In 0.18µ CMOS, C_{gd} is about 45% the value of C_{gs}
- Input capacitance calculation

$$Z_{in} \approx rac{1}{s(C_{gs} + C_{gd}(1 - A_v))} = rac{1}{sC_{gs}(1 + rac{C_{gd}}{C_{gs}}(1 + g_m R_L))}$$

For 0.18µ CMOS, gain of 3, input cap is almost tripled over $C_{gs}!$ $Z_{in} \approx \frac{1}{sC_{as}(1+0.45(4))} = \frac{1}{sC_{as}2.8}$

H.-S. Lee & M.H. Perrott

Reduction of C_{gd} **Impact Using a Cascode Device**

The cascode device lowers the gain seen by C_{gd} of M₁(the total gain is the same as non-cascoded amp)

$$A_v
ightarrow g_{m1} rac{1}{g_{m2}} pprox 1 \;\; \Rightarrow \;\; Z_{in} pprox rac{1}{sC_{gs}(1+rac{2C_{gd}}{C_{qs}})}$$

For 0.18m CMOS and total gain of 3, impact of C_{gd} is reduced by 50%:

$$Z_{in} \approx \frac{1}{sC_{gs}1.9}$$

Issue: cascoding lowers achievable voltage swing

H.-S. Lee & M.H. Perrott

Source-Coupled Amplifier (Unilateralization)

- Remove impact of Miller effect by sending signal through source node rather than drain node
 - C_{gd} not Miller multiplied AND impact of C_{gs} cut in half!

$$Z_{in} \approx \frac{1}{s(C_{gs}/2 + C_{gd})} \Rightarrow Z_{in} \approx \frac{1}{sC_{gs}0.95} \quad (0.18\mu \text{ CMOS})$$
The bad news

- Signal has to go through source node (C_{sb} significant)
 - Power consumption doubled

H.-S. Lee & M.H. Perrott

Neutralization

- Consider canceling the effect of C_{ad}
 - Choose $C_N = C_{gd}$
 - Charging of C_{gd} now provided by C_N
- Benefit: Impact of C_{gd} reduced:

 $C_{in} \approx C_{gs} + (1 + |A_v|)C_{gd} + (1 - |A_v|)C_{gd} = C_{gs} + 2C_{gd}$

:same as cascode

Issues:

What happens if C_N is not precisely matched to C_{gd}?

 $C_{in} \approx C_{gs} + (1 + |A_v|)C_{gd} + (1 - |A_v|)C_N$

- Since the neutralization does not completely remove the effect of C_{gd}, we can make C_N slightly larger than C_{gd} to 'over neutralize'
- Over neutralization can reduce the effect of C_{gs}, but if C_N is too large, the input capacitance is negative and can compromise stability.
- At high frequencies, this can lead to inductive input impedance
- How do we create the inverting amplifier?

Practical Implementation of Neutralization

- Leverage differential signaling to create an inverted signal
- Only issue left is matching C_N to C_{gd}
 - Often use lateral metal caps for C_N (or CMOS transistor)
 - If C_N too low, residual influence of C_{gd}
 - If C_N too high, input impedance has inductive component
 - Causes peaking in frequency response

Often evaluate acceptable level of peaking using eye diagrams
 H.-S. Lee & M.H. Perrott MIT OCW

Shunt-peaked Amplifier

- Use inductor in load to extend bandwidth
 - Often implemented as a spiral inductor
- We can view impact of inductor in both time and frequency
 - In frequency: peaking of frequency response
 - In time: delay of changing current in R_L
- Issue can we extend bandwidth without significant peaking?

Shunt-peaked Amplifier - Analysis

Expression for gain

$$A_{v} = g_{m}Z_{out} = g_{m}[(sL_{d} + R_{L})||1/(sC_{tot})]$$

$$= g_{m}R_{L}\frac{s(L_{d}/R_{L}) + 1}{s^{2}L_{d}C_{tot} + sR_{L}C_{tot} + 1}$$

$$m = \frac{R_{L}C_{tot}}{\tau}, \text{ where } \tau = \frac{L_{d}}{R_{L}}$$

Corresponds to ratio of RC to LR time constants

H.-S. Lee & M.H. Perrott

The Impact of Choosing Different Values of m – Part 1

• Want to solve for ω_2/ω_1

H.-S. Lee & M.H. Perrott

The Impact of Choosing Different Values of m – Part 2

From previous slide, we have

$$\frac{jw_2/(w_1m)+1}{-(w_2/(w_1m))^2m+jw_2/w_1+1} = \frac{1}{\sqrt{2}}$$

After much algebra

$$\frac{w_2}{w_1} = \sqrt{\left(-\frac{m^2}{2} + m + 1\right) + \sqrt{\left(-\left(\frac{m^2}{2} + m + 1\right)^2 + m^2\right)^2}}$$

- We see that *m* directly sets the amount of bandwidth extension!
 - Once m is chosen, inductor value is

$$L_d = \frac{R_L^2 C_{tot}}{m}$$

H.-S. Lee & M.H. Perrott

Plot of Bandwidth Extension Versus m

• Highest extension: $\omega_2/\omega_1 = 1.85$ at m ≈ 1.41

However, peaking occurs!
 H.-S. Lee & M.H. Perrott

Plot of Transfer Function Versus m

- Maximum bandwidth: m = 1.41 (extension = 1.85)
- Maximally flat response: m = 2.41 (extension = 1.72)
- Best phase response:
 m = 3.1
 (extension = 1.6)
- No inductor: m = infinity
- Eye diagrams often used to evaluate best m H.-S. Lee & M.H. Perrott

Zero-peaked Common Source Amplifier

- Inductors are expensive with respect to die area
- Can we instead achieve bandwidth extension with capacitor?
 - Idea: degenerate gain at low frequencies, remove degeneration at higher frequencies (i.e., create a zero)
- Issues:
 - Must increase R_L to keep same gain (lowers pole)
- Lowers achievable gate voltage bias (lowers device f_t) H.-S. Lee & M.H. Perrott

Zero-peaked Common Source Amplifier Analysis

- Add C_{gd} to C_{tot} (as we did previously)
- Ignore the feed-forward effect of C_{gd} (It contributes high frequency zero of little consequence)
- Analysis shows

$$\frac{V_o}{V_i} = -\frac{g_m Z_L}{1 + g_m Z_s + s C_{gs} Z_s}$$

H.-S. Lee & M.H. Perrott

Zero-peaked Amplifier Analysis Continued

Assuming $\omega << \omega_T$ $g_m >> sC_{gs}$

Transfer function can now be simplified to

$$\frac{V_o}{V_i} \approx -\frac{g_m R_L (1 + s R_s C_s)}{(1 + s R_L C_{tot})(1 + s R_s C_s + g_m R_s)}$$

Adds a zero at $1/R_sC_s$, but introduces a 2nd pole at $\frac{1+g_mR_s}{R_sC_s}$

Reduces low freq. gain to $\frac{g_m R_L}{1 + g_m R_s}$

The 1st pole at $1/R_LC_{tot}$ can be cancelled by making $R_sC_s=R_LC_{tot}$, then the bandwidth is extended to the 2nd pole

Zero-peaked Amplifier Continued

Pole-zero cancellation:

$$R_s C_s = R_L C_{tot}$$

$$\frac{V_o}{V_i} = -\frac{g_m R_L}{1 + s R_s C_s + g_m R_s}$$

$$A_{vdc} = \frac{g_m R_L}{1 + g_m R_s} \quad \omega_h = \frac{1 + g_m R_s}{R_s C_s} = \frac{1 + g_m R_s}{R_L C_{tot}}$$

 Does it really help the bandwidth? If we designed the simple CS amplifier for the same gain, what would be the bandwidth? We need to first reduce R_L to $R'_L = \frac{R_L}{1 + g_m R_s}$ The bandwidth is then $\omega_h = \frac{1}{R'_L C_{tot}} = \frac{1 + g_m R_s}{R_L C_{tot}}$

Same as zero-peaked amplifier!

Zero-peaked Amplifier Input impedance

Input Impedance (ignoring Miller effect for now)

$$Z_{in} = \frac{1}{sC_{gs}} + (1 + \frac{g_m}{sC_{gs}})Z_s$$

Again, $\omega << \omega_T g_m >> sC_{gs}$

Also, near the upper 3dB bandwidth, $sR_sC_s >> 1$

The negative input resistance component can cause parasitic oscillation. The actual input impedance $Z_{in,tot}$ is the parallel connection between Z_{in} and KC_{gd} .

Back to Inductors – Shunt and Series Peaking

- Combine shunt peaking with a series inductor
 - Bandwidth extension by converting to a second order filter response
 - Can be designed for proper peaking
- Increases delay of amplifier

Refer to Tom Lee's book pp. 279-280 (2nd ed.) or 187-189 (1st ed.)