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Shunt-Series Peaking

Series inductors isolate load capacitance from M1: 
delays charging of load capacitance
Trades delay for bandwidth
L1, L2, L3 can be implemented by 2 coupled inductors 
with coupling coefficient of k
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T-Coil Bandwidth Enhancement
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Uses coupled inductors to realize T inductor network
- Works best if capacitance at drain of M1 is much less than 

the capacitance being driven at the output load
CB provides parallel resonance to improve bandwidth further 
See Chap. 9 (Ch. 8, 1st ed.) of Tom Lee’s book pp 279-282 (187-
191)
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T-Coil Continued

The self inductance L (with the other winding open-
circuited) must be

The bridging capacitance

Coupling coefficient
k=1/3 for Butterworth response
k=1/2 for maximally flat delay (linear phase)

Bandwidth extension: approximately 2.8 (Butterworth)

- See S. Galal, B. Ravazi, “10 Gb/s Limiting Amplifier and Laser/Modulator 
Driver in 0.18u CMOS”, ISSCC 2003, pp 188-189 and “Broadband ESD 
Protection …”, pp. 182-183

- Also see "Circuit Techniques for a 40 Gb/s Transmitter in 0.13um CMOS", 
J. Kim, et. al. ISSCC 2005, Paper 8.1 
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Bandwidth Enhancement With ft Doublers

A MOS transistor has ft calculated as

ft doubler amplifiers attempt to 
increase the ratio of 
transconductance to capacitance
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We can make the argument that differential amplifiers 
are ft doublers
- Capacitance seen by Vin for single-ended input:
- Difference in current: 

Transconductance to Cap ratio is doubled:
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Creating a Single-Ended Output
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Input voltage is again dropped across two transistors
- Ratio given by voltage divider in capacitance

Ideally is ½ of input voltage on Cgs of each device
Input voltage source sees the series combination of 
the capacitances of each device
- Ideally sees ½ of the Cgs of M1

Currents of each device add to ideally yield ratio:
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Creating the Bias for M2
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Use current mirror for bias (Battjes ft doubler)
- Inspired by bipolar circuits (see Tom Lee’s book, pp288-

290 (197-199))
Need to set Vbias such that current through M1 has the 
desired current of Ibias- The current through M2 will ideally match that of M1
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Problems of ft Doubler in Modern CMOS RF Circuits

Problems: 
- Works if Cgs dominates capacitance , but in modern 

CMOS, this is not the case (for example, Cgd=0.45Cgs in 
0.18 µ CMOS)

- achievable bias voltage across M1 (and M2) is severely 
reducedby 2x!) (thereby reducing effective ft of device)

- Input capacitance degrades due to Cgs, Cdb of M3: at most 
1.5x improvement in transconductance/capacitance ratio

Assuming zero Cdb:
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Increasing Gain-Bandwidth Product Through Cascading
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We can significantly increase the gain of an amplifier 
by cascading n stages

- Issue – bandwidth degrades, but by how much?
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Analytical Derivation of Overall Bandwidth

The overall 3-db bandwidth of the amplifier is where

- w1 is the overall bandwidth
- A and wo are the gain and bandwidth of each section

- Bandwidth decreases much slower than gain increases
Overall gain bandwidth product of amp can be increased
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Transfer Function for Cascaded Sections
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Choosing the Optimal Number of Stages

To first order, there is a constant gain-bandwidth 
product for each stage

- Increasing the bandwidth of each stage requires that we 
lower its gain

- Can make up for lost gain by cascading more stages
We found that the overall bandwidth is calculated as

Assume that we want to achieve gain G with n stages

From this, optimum gain/stage ≈ sqrt(e) = 1.65
- See Tom Lee’s book, pp 299-302 (207-211,1st ed.)



H.-S. Lee & M.H. Perrott MIT OCW

Achievable Bandwidth Versus G and n
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- Note than gain 
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from plot as
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Motivation for Distributed Amplifiers
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We achieve higher gain for a given load resistance by 
increasing the device size (i.e., increase gm)
- Increased capacitance lowers bandwidth

We therefore get a relatively constant gain-bandwidth product
We know that transmission lines have (ideally) infinite 
bandwidth, but can be modeled as LC networks
- Can we lump device capacitances into transmission line?
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Distributing the Input Capacitance
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Lump input capacitance into LC network corresponding 
to a transmission line
- Signal ideally sees Zo=RL rather than an RC lowpass
- Often implemented as lumped networks such as T-coils
- We can now trade delay (rather than bandwidth) for gain

Issue:  outputs are delayed from each other
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Distributing the Output Capacitance
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Delay the outputs same amount as the inputs
- Now the signals match up
- We have also distributed the output capacitance

Benefit – high bandwidth
Negatives – high power, poorer noise performance, 
expensive in terms of chip area
- Each transistor gain is adding rather than multiplying!
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Narrowband Amplifiers
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For wireless systems, we are interested in 
conditioning and amplifying the signal over a narrow 
frequency range centered at a high frequency
- Allows us to apply narrowband transformers to create 

matching networks
Can we take advantage of this fact when designing 
the amplifier?
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Tuned Amplifiers
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Put inductor in parallel across RL to create bandpass
filter
- It will turn out that the gain-bandwidth product is 

roughly conserved regardless of the center frequency
To see this and other design issues, we must look 
closer at the parallel resonant circuit
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Tuned Amp Transfer Function About Resonance

Evaluate at s = jω

Look at frequencies about resonance:
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Amplifier transfer function

Note that conductances
add in parallel
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Tuned Amp Transfer Function About Resonance (Cont.)

From previous slide

Simplifies to RC circuit for bandwidth calculation
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Comparison between Low-Pass and Band-Pass
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Comparison between Low-Pass and Band-Pass

Tuned amplifier characteristic is a frequency 
translated version of the low-pass amplifier
The band-pass bandwidth is equal to the low-pass 
bandwidth (the band-pass shape is 2x narrower but 
upper and lower sidebands give the same bandwidth 
as LP)
We are tuning out the effect of capacitor (parallel LC 
looks like an open circuit at resonance, so C doesn’t 
load the amplifier)
This is often called low-pass to band-pass transform 
in filter design:
- Replace C with parallel LC tank- Replace L with series LC tank
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Gain-Bandwidth Product for Tuned Amplifiers
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The gain-bandwidth product:

The above expression is just like the low-pass and 
independent of center frequency!
- In practice, we need to operate at a frequency less than 

the ft of the device
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The Issue of Q
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By definition

For parallel tank

Comparing to above:
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Design of Tuned Amplifiers
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Three key parameters
- Gain = gmRp- Center frequency = ωo- Q = ωo/BW

Impact of high Q 
- Benefit: allows achievement of high gain with low power- Problem:  makes circuit sensitive to process/temp 

variations
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Issue:  Cgd Can Cause Undesired Oscillation

At frequencies below resonance, tank looks inductive
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Resistance!
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Use Cascode Device to Remove Impact of Cgd
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At frequencies above and below resonance

Purely
Capacitive!
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Neutralization in Tuned Amplifier

Recall the neutralization for broadband amplifier

For narrowband amplifier, the inverting signal can 
be generated by a tapped transformer
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Neutralization with Tapped Transformer

Problems: Area and quality of on chip transformer
The neutralization cap CN must be matched to Cgd
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Differential Neutralization for Narrow Band Amplifier

Same principle as differential neutralization in broadband 
amp
Only issue left is matching CN to Cgd- Often use lateral metal caps for CN (or CMOS transistor)
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Superregenerative Amplifier

quench

Vin is sampled at the rate fc (in actual implementation fc may 
be input level dependent)

The sampled output voltage

Can be used for both broadband and narrowband – we’ll do a simple 
analysis for broadband amp.
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Superregenerative Amplifier

Nyquist theorem

Gain calculation

Trades bandwidth only logarithmically with gain!
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Superregenerative Amplifier Example (Narrowband)

RB: DC bias resistor
LC, C1: Tuning LC
C2 : positive feedback
LE: RF choke (large inductance)

•When the RF amplitude becomes large, it is rectified at the emitter of Q1
•This raises the DC potential at the emitter Q1 eventually turning it off
•The RF oscillation dies (quenched), and the DC potential at emitter of Q1 
returns
•Amplitude of oscillation grows again due to positive feedback
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Active Real Impedance Generator

Input admittance:
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Av(s)
VoutVin

Av(s) = -Aoe-jΦ

Cf

Resistive component!
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This Principle Can Be Applied To Impedance Matching
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We will see that it’s advantageous to make Zin real 
without using resistors
- For the above circuit (ignoring Cgd)
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Looks like series resonant circuit!
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Use A Series Inductor to Tune Resonant Frequency
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Calculate input impedance with added inductor (in 
order to choose resonance freq. and input resistance 
separately)

Often want purely resistive component at frequency ωo- Choose Lg such that resonant frequency = ωo
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Narrowband Alternative to LC

On-chip inductors take up considerable die area and have 
relatively poor Q. Is there any other alternatives?

- Use quarter-wavelength transmission line (waveguide) resonator?
- In Lecture 5 we found the λ/4 waveguide with shorted load behave much like 

a parallel LC circuit, while with open load it behaves like a series LC
- The problem is the dimension. For 900MHz mobile phone frequency, λ/4 in 

free space is 3.25 inches!- With high permittivity dielectric material (ceramic), the size can be reduced 
to a reasonable dimensions. With εr=10, the length of waveguide is only 
about inch.- Different configurations of filters can be built by combining sections of 
series and parallel LC equivalents - More appropriate at frequencies over GHz

SAW (Surface Acoustic Wave) filters are another popular 
alternative
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SAW Filters

SAW filters use piezoelectric substrate to generate surface 
acoustic wave

electrodes

input output

piezoelectric 
substrate

λ Adapted from Japan Radio Co.
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SAW Filters

Piezoelectric substrate- LiTaO3- LiNbO3- Quartz
Filter Structures- Longitudinal Filter- Transversal Filter- Ladder Filter

Saw filters have high selectivity and low insertion loss (down to 
a fraction of % fractional bandwidth, ~2dB insertion loss

Wide range of enter frequency (few 100 kHz-GHz)

At 1-2 GHz, the dimensions of SAW filters are 1-2mm
For more information on SAW filters look over www.njr.com
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SAW Filters in Mobile Phones
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Figure by MIT OCW.

Adapted from Japan Radio Co.
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SAW Filter Example
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Figure by MIT OCW.

Adapted from Japan Radio Co.
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