
6.823 Fall 2005
Handout #1

 6.823 Computer System Architecture
 EDSACjr Last Updated:
 9/22/2005 7:29 PM

The first computer architects did not know exactly what was needed in their machines. They did
know, however, that parts were expensive and unreliable. Thus, these pioneers developed
architectures that minimized hardware while attempting to provide sufficient functionality to
programmers. One of the first electronic computers, EDSAC, had a single accumulator and only
absolute addressing of memory. Since one could reference memory only by an address listed
explicitly within a program, self-modifying code was essential.

We now know that register based addressing and indirection make assembly level programming
and compilation a lot easier. This lesson was learned, however, after programmers spent nearly
five years programming absolute addressing machines. Here we introduce an instruction set that
gives the functionality of EDSAC without some of the more obscure opcodes. This instruction
set, named the EDSACjr, is described in Table H1-1. In the notation used in the table below,
M[x] stands for the contents of the memory location addressed by x. Accum refers to the
accumulator. ← signifies that data is transferred (copied) from the location to the right of the ←
to the location on the left. The immediate variable n is an address or a literal depending on the
context. The EDSACjr architecture allows programmers to put constants at any point in the
memory when a program is loaded.

Opcode Description Bit Representation
ADD n Accum ← Accum + M[n] 00001 n
SUB n Accum ← Accum - M[n] 10000 n
STORE n M[n] ← Accum 00010 n
CLEAR Accum ← 0 00011 00000000000
OR n Accum ← Accum | M[n] 00000 n
AND n Accum ← Accum & M[n] 00100 n
SHIFTR n Accum ← Accum shiftr n 00101 n
SHIFTL n Accum ← Accum shiftl n 00110 n
BGE n If Accum ≥ 0 then PC ← n 00111 n
BLT n If Accum < 0 then PC ← n 01000 n
END Halt machine 01010 00000000000

Table H1-1: The EDSACjr instruction set

 1

6.823 Fall 2005
Handout #1

The shifts are arithmetic shifts. All words are 16 bits long. As in EDSAC, instructions are
encoded as integers. The first 5 bits are the opcode and the last 11 bits form the immediate field
(an 11-bit immediate address addresses up to 2048 words (16-bit) of memory -- twice that of the
real EDSAC). Integers are represented in 16 bits, the most significant bit being a sign bit.

Using Macros for EDSACjr

What are Macros?

Macros are assembler directives that allow the programmer to define short names for a sequence
of instructions. Once defined, a macro can be used within the code in place of the sequence of
instructions, thus saving the programmer time and effort, as well as making the program easier to
read. At assembly time, macros are expanded according to their definition. That is, each
occurrence of a macro is replaced by its corresponding instruction sequence. As described
below, macros can have arguments, as well as both global and local labels.

A Simple Example

If you have already tried writing code with the EDSACjr instruction set, you have probably
noticed that there is no LOAD instruction for putting the value at a memory location into the
accumulator. To do a LOAD, you need to first CLEAR the accumulator, and then ADD the
contents of the desired memory location to it. If you need to do a lot of LOADs, it can be quite
cumbersome to always have to type this CLEAR-ADD sequence. To make it easier, we can
define the following macro for LOAD:

 .macro LOAD(n)
 CLEAR
 ADD n
 .end macro

Then, whenever the line LOAD(n) occurs in the code, it will be replaced by the two instructions,
CLEAR and ADD as defined. For example:

LOAD A → expands to → CLEAR
SUB B ADD A
 SUB B

Note how the argument of the macro is used during expansion. It is also possible to use multiple
arguments separated by commas.

It is very important to note that a macro is not the same as a subroutine or function. A function
call involves jumping to and returning from a single piece of subroutine code located somewhere
in memory, while a macro “call” involves in-place substitution of the macro code. That is, if
there are multiple occurrences of a macro, then the macro code is duplicated multiple times, once

 2

6.823 Fall 2005
Handout #1

at each occurrence in the code. This duplication does not happen with function calls. Because of
this difference, using macros usually results in more actual code than using a function call.
However, it also usually results in slightly faster code, since macros do not have the calling-
convention overhead needed by function calls.1

Global Labels

Since macros work by simple expansion, you can refer to labels outside the macro, and these
labels will be used verbatim as long as the name of the label does not conflict with any of the
macro’s arguments or with labels defined within the macro. For example, suppose we define the
following macro:

 .macro STOPGE
 BGE stop
 .end macro

We may then use this macro as follows:

 STOPGE → expands to → BGE stop
 SUB B SUB B
stop: ADD A stop: ADD A

As shown, global labels are useful for accessing commonly used locations in memory.

Local Labels

You can also define and use labels within a macro. During expansion, such local labels will be
replaced by a unique label for each instance of the macro. For example, consider the following
interesting (silly?) macro:

 .macro HANGGE
 here:
 BGE here ; if accum >= 0, then loop forever
 .end macro

When this macro is used, the local labels are expanded as follows:

HANGGE → expands to → here_1: BGE here_1
SUB B SUB B
HANGGE here_2: BGE here_2

1 Another interesting difference between macros and function calls is that you cannot write recursive macros. Think
of what will happen if you do.

 3

6.823 Fall 2005
Handout #1

Note that the local label here is converted to a unique label during expansion so that multiple
instances of a macro do not interfere with each other.

It is also possible to place a label at the end of a macro definition, even if there is no instruction
at that position. Such a label would point to the instruction immediately following the macro call
in the main code. For example, we can define a conditional ADD macro as follows:

 .macro ADDGE n ; this macro only adds if accum >= 0
 BLT donothing ; if accum < 0,
 ; then just go to instruction after
 ; macro
 ADD n ; else accum <- accum + M[n]
 donothing:
 .end macro

It can be used as follows:

ADDGE A → expands to → BLT donothing_3
SUB B ADD A
 donothing_3: SUB B

 4

	What are Macros?
	A Simple Example
	Global Labels
	Local Labels

