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Problem M3.1: Out-of-order Scheduling  

Ben Bitdiddle is adding a floating-point unit to the basic MIPS pipeline. He has patterned the 
design after the IBM 360/91’s floating-point unit. His FPU has one adder, one multiplier, and 
one load/store unit. The adder has a four-cycle latency and is fully pipelined. The multiplier has 
a fifteen-cycle latency and is fully pipelined.  Assume that loads and stores take 1 cycle (plus one 
cycle for write-back for loads) and that we have perfect branch prediction. 

There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There 
is a single write-back port to each register file. In the case of a write-back conflict, the older 
instruction writes back first. Floating-point instructions (and loads writing floating point 
registers) must spend one cycle in the write-back stage before their result can be used.  Integer 
results are available for bypass the next cycle after issue. 

Ben is now deciding whether to go with (a) in-order issue using a scoreboard, (b) out-of-order 
issue, or (c) out-of-order issue with register renaming. His favorite benchmark is this DAXPY 
loop central to Gaussian elimination (Hennessy and Patterson, 291).  The following code 
implements the operation Y=aX+Y for a vector of length 100.  Initially R1 contains the base 
address for X, R2 contains the base address for Y, and F0 contains a. Your job is to evaluate the 
performance of the three scheduling alternatives on this loop. 

loop:
I1 L.D F2, 0(R1) ;load X(i)
I2 MUL.D F1, F2, F0 ;multiply a*X(i)
I3 L.D F3, 0(R2) ;load Y(i)
I4 ADD.D F3, F1, F3 ;add a*X(i)+Y(i)
I5 S.D F3, 0(R2) ;store Y(i)
I6 DADDUI R1, R1, 8 ;increment X index
I7 DADDUI R2, R2, 8 ;increment Y index
I8 DSGTUI R3, R1, 800 ;test if done 
I9 BEQZ R3, loop ;loop if not done 
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Problem M3.1.A In-order using a scoreboard 

Fill in the scoreboard in table M3.1-1 to simulate the execution of one iteration of the loop for in-
order issue using a scoreboard (refer to slide L11-29 in 2005).  Keep in mind that, in this scheme, 
no instruction is issued that has a WAW hazard with any previous instruction that has not written 
back (just like in the lecture slides).  Recall the WB stage is only relevant for FP instructions 
(integer instructions can forward results).  You may use ellipses in the table to represent the 
passage of time (to compress repetitive lines). 

In steady state, how many cycles does each iteration of the loop take?  What is the bottleneck? 

Problem M3.1.B Out-of-order 

Now consider a single-issue out-of-order implementation (refer to slide L12-5 in 2005). In this 
scheme, the issue stage buffer holds multiple instructions waiting to issue. The decode stage can 
add up to one instruction per cycle to the issue buffer. The decode stage adds an instruction to 
the issue buffer if there is space and if the instruction does not have a WAR hazard with any 
previous instruction that has not issued or a WAW hazard with any previous instruction that has 
not written back. Assume you have an infinite issue buffer.  Assume only one instruction can be 
dispatched from the issue buffer at a time. 

Table M3.1-2 represents the execution of one iteration of the loop in steady state. Fill in the 
cycle numbers for the cycles at which each instruction issues and writes back. The first row has 
been filled out for you already; please complete the rest of the table. Note that the order of 
instructions listed is not necessarily the issue order. We define cycle 0 as the time at which 
instruction I1 is issued. 

Draw arrows for the RAW, WAR, and WAW dependencies that are involved in the critical path 
of the loop in table M3.1-2. In steady state, how many cycles does each iteration of the loop 
take? 
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Problem M3.1.C Register Renaming 

The number of registers specified in an ISA limits the maximum number of instructions that can 
be in the pipeline. This question studies register renaming to solve this problem. In this question, 
we will consider an ideal case where we have unlimited hardware resources for renaming 
registers. 

Table M3.1-3 shows instructions from our benchmark for two iterations using the same format as 
in Table M3.1-2. First, fill in the new register names for each instruction, where applicable. 
Since we have an infinite supply of register names, you should use a new register name each 
time a register is written (T0, T1, T2, etc). Keep in mind that after a register has been renamed, 
subsequent instructions that refer to that register need to refer instead to the new register name. 
You may find it helpful to create a rename table. Rename both integer and floating-point 
instructions. 

Next, fill in the cycle numbers for the cycles at which each instruction issues and writes back. 
The decode stage can add up to one instruction per cycle to the re-order buffer (ROB). Assume 
that instruction I2 was decoded in cycle 0, and cannot be issued until cycle 2. Also assume that 
you have an infinite ROB.   

In steady state, how many cycles does each iteration of the loop take?  What is the performance 
bottleneck? 
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Instr. 
Issued 

Time 
(cycles) 

Functional Unit Status Floating Point 
Registers Reserved 

for Writes Int Load (1) Adder 
(4) 

Multiplier 
(15) WB 

I1 0 F2 F2 
1 F2 F2 

I2 2 F1 F1 

Table M3.1-1 
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Time 

Op Dest Src1 Src2 
Decode → Issue Issued WB 

I1 -1 0 1 L.D F2 R1 

I2 MUL.D F1 F2 F0 

I3 L.D F3 R2 

I4 ADD.D F3 F1 F3 

I5 S.D R2 F3 

I6 DADDUI R1 R1 

I7 DADDUI R2 R2 

I8 DSGTUI R3 R1 

I9 BEQZ R3 

Table M3.1-2 
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Time 

Op Dest Src1 Src2 
Decode → Issue Issued WB 

I1 -1 0 1 L.D T0 R1 

I2 MUL.D T1 t0 F0 

I3 L.D T2 R2 

I4 ADD.D T3 

I5 S.D 

I6 DADDUI 

I7 DADDUI 

I8 DSGTUI 

I9 BEQZ 

I1 L.D 

I2 MUL.D 

I3 L.D 

I4 ADD.D 

I5 S.D 

I6 DADDUI 

I7 DADDUI 

I8 DSGTUI 

I9 BEQZ 

Table M3.1-3 
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Problem M3.2: Out-of-Order Scheduling  

This problem deals with an out-of-order single-issue processor that is based on the basic MIPS 
pipeline and has floating-point units.  The FPU has one adder, one multiplier, and one load/store 
unit. The adder has a two-cycle latency and is fully pipelined.  The multiplier has a ten-cycle 
latency and is fully pipelined.  Assume that loads and stores take 1 cycle (plus one cycle for 
write-back for loads). 

There are 4 floating-point registers, F0-F3. These are separate from the integer registers.  There 
is a single write-back port to each register file.  In the case of a write-back conflict, the older 
instruction writes back first. Floating-point instructions (including loads writing floating point 
registers) must spend one cycle in the write-back stage before their result can be used.  Integer 
results are available for bypass the next cycle after issue. 

To maximize number of instructions that can be in the pipeline, register renaming is used.  The 
decode stage can add up to one instruction per cycle to the re-order buffer (ROB).   

The instructions are committed in order and only one instruction may be committed per cycle. 
The earliest time an instruction can be committed is one cycle after write back. 

For the following questions, we will evaluate the performance of the code segment in Figure 
M3.2-A. 

I1 L.D F1, 5(R2) 
I2 MUL.D F2, F1, F0 
I3 ADD.D F3, F2, F0 
I4 ADDI R2, R2, 8 
I5 L.D F1, 5(R2) 
I6 MUL.D F2, F1, F1 
I7 ADD.D F2, F2, F3 

Figure M3.2-A 
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Problem M3.2.A 

For this question, we will consider an ideal case where we have unlimited hardware resources for 
renaming registers.  Assume that you have an infinite ROB. 

Your job is to complete Table M3.2-1.  Fill in the cycle numbers for when each instruction enters 
the ROB, issues, writes back, and commits.  Also fill in the new register names for each 
instruction, where applicable. Since we have an infinite supply of register names, you should use 
a new register name each time a register is written (T0, T1, T2, … etc).  Keep in mind that after a 
register has been renamed, subsequent instructions that refer to that register need to refer instead 
to the new register name. 

Time 
OP Dest Src1 Src2Decode Æ 

ROB 
Issued WB Committed 

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0 
I3 1 ADD.D 
I4 ADDI -
I5 L.D -
I6 MUL.D 
I7 ADD.D 

Table M3.2-1 

Problem M3.2.B 

For this question, assume that you have a two-entry ROB. An ROB entry can be reused one 
cycle after the instruction using it commits.   

Your job is to complete Table M3.2-2.  Fill in the cycle numbers for when each instruction enters 
the ROB, issues, writes back, and commits.  Also fill in the new register names for each 
instruction, where applicable. 

Time 
OP Dest Src1 Src2Decode Æ 

ROB 
Issued WB Committed 

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0 
I3 3 ADD.D 
I4 ADDI -
I5 L.D -
I6 MUL.D 
I7 ADD.D 

Table M3.2-2 
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Problem M3.3: Superscalar Processor 

Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features: 
o	 Four fully-pipelined functional units: ALU, MEM, FADD, FMUL 
o	 Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the 

ROB (assume perfect branch prediction and no cache misses) 
o	 An unbounded length Reorder Buffer that can perform the following operations on every 

cycle: 
o	 Accept two instructions from the Instruction Fetch and Decode Unit 
o	 Dispatch an instruction to each functional unit including Data Memory 
o	 Let Writeback update an unlimited number of entries 
o	 Commit up to 2 instructions in-order 

o	 There is no bypassing or short circuiting. For example, data entering the ROB cannot be 
passed on to the functional units or committed in the same cycle. 

. 

i ROB 

(infinite) 

+ Mem 

FMUL 

i

Instruct on 
Queue 

2 Instr per 
cycle 

ALU 

FADD 

Data 

Regfile 

Issue as 
many as 
possible 

Writeback as many 
as possible 

Commit at 
most 2 nstr 

per cycle 
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Now consider the execution of the following program on this machine using: 

I1 loop: 

I2 

I3 

I4 

I5 

I6 

I7 

I8 

I9 

I10 

I11 

I12 

I13 

I14 


LD F2, 0(R2) 

LD F3, 0(R3) 

FMUL F4, F2, F3 

LD F2, 4(R2) 

LD F3, 4(R3) 

FMUL F5, F2, F3 

FMUL F6, F4, F5 

FADD F4, F4, F5 

FMUL F6, F4, F5 

FADD F1, F1, F6 

ADD R2, R2, 8 

ADD R3, R3, 8 

ADD R4, R4, -1 

BNEZ R4, loop 


Problem M3.3.A 

Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10. 
Tags should not be reused. 

Instr # Instruction Dest Src1 Src2 
I1 LD F2, 0(R2) T1 R2 0 
I2 LD F3, 0(R3) T2 R3 0 
I3 FMUL F4, F2, F3 
I4 LD F2, 4(R2) R2 4 
I5 LD F3, 4(R3) R3 4 
I6 FMUL F5, F2, F3 
I7 FMUL F6, F4, F5 
I8 FADD F4, F4, F5 
I9 FMUL F6, F4, F5 
I10 FADD F1, F1, F6 F1 

Renaming table 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 
R2  
R3  
F1  
F2 T1 
F3 T2 
F4  
F5  
F6  
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Problem M3.3.B 

Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the 
data dependencies between the instructions after register renaming 

Problem M3.3.C 

The attached table is a data structure to record the times when some activity takes place in the 
ROB. For example, one column records the time when an instruction enters ROB, while the last 
two columns record, respectively, the time when an instruction is dispatched to the FU’s and the 
time when results are written back to the ROB. This data structure has been designed to test your 
understanding of how a Superscalar machine functions.  

Fill in the blanks in last two columns up to slot T13 (You may use the source columns for book 
keeping – no credit will be taken off for the wrong entries there).  
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Slot Instruction 
Cycle 

instruction 
entered 
ROB 

Argument 1 Argument 2 dst Cycle 
dispatched 

Cycle 
written 
back to 
ROB 

src1 cycle 
available 

Src2 cycle 
available 

dst reg 

T1 LD F2, 0(R2) 1 C 1 R2 1 F2 2 6 
T2 LD F3, 0(R3) 1 C 1 R3 1 F3 3 7 
T3 FMUL F4, F2, F3 2 F3 7 F4 
T4 LD F2, 4(R2) 2 C 2 R2 F2 
T5 LD F3, 4(R3) 3 C 3 R3 F3 
T6 FMUL F5, F2, F3 3  F5  
T7 FMUL F6, F4, F5 4  F6  
T8 FADD F4, F4, F5 4  F4  
T9 FMUL F6, F4, F5 5  F6  
T10 FADD F1, F1, F6 5  F1  
T11 ADD R2, R2, 8 6 R2 6 C 6 R2 
T12 ADD R3, R3, 8 6 R3 6 C 6 R3 
T13 ADD R4, R4, -1 7 R4 7 C 7 R4 
T14 BNEZ R4, loop 7 C Loop 
T15 LD F2, 0(R2) 8 C 8 F2 10 14 
T16 LD F3, 0(R3) 8 C 8 F3 11 15 
T17 FMUL F4, F2, F3 9  F4  
T18 LD F2, 4(R2) 9 C 9 F2 
T19 LD F3, 4(R3) 10 C 10 F3 
T20 FMUL F5, F2, F3 10 F5 
T21 FMUL F6, F4, F5 11 F6 
T22 FADD F4, F4, F5 11 F4 
T23 FMUL F6, F4, F5 12 F6 
T24 FADD F1, F1, F6 12 F1 
T25 ADD R2, R2, 8 13 C 13 R2 
T26 ADD R3, R3, 8 13 C 13 R3 
T27 ADD R4, R4, -1 14 C 14 R4 
T28 BNEZ R4, loop 14 C Loop 
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Problem M3.3.D 

Identify the instructions along the longest latency path in completing this iteration of the loop (up 
to instruction 13). Suppose we consider an instruction to have executed when its result is 
available in the ROB. How many cycles does this iteration take to execute? 

Problem M3.3.E 

Do you expect the same behavior, i.e., the same dependencies and the same number of cycles, 
for the next iteration? (You may use the slots from T15 onwards in the attached diagram for 
bookkeeping to answer this question). Please give a simple reason why the behavior may repeat, 
or identify a resource bottleneck or dependency that may preclude the repetition of the behavior. 

Problem M3.3.F 

Can you improve the performance by adding at most one additional memory port and a FP 
Multiplier? Explain briefly. 

Yes / No 

Problem M3.3.G 

What is the minimum number of cycles needed to execute a typical iteration of this loop if we 
keep the same latencies for all the units but are allowed to use as many FUs and memory ports 
and are allowed to fetch and commit as many instructions as we want. 
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 Problem M3.4: Register Renaming and Static vs. Dynamic Scheduling  

The following MIPS code calculates the floating-point expression E = A * B + C * D, where the 
addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, respectively: 

L.S F0, 0(R1) 
L.S F1, 0(R2) 

MUL.S F0, F0, F1

L.S F2, 0(R3) 
L.S F3, 0(R4) 

MUL.S F2, F2, F3

ADD.S F0, F0, F2

S.S F0, 0(R5) 

Problem M3.4.A Simple Pipeline 

Calculate the number of cycles this code sequence would take to execute (i.e., the number of 
cycles between the issue of the first load instruction and the issue of the final store, inclusive) on 
a simple in-order pipelined machine that has no bypassing.  The datapath includes a load/store 
unit, a floating-point adder, and a floating-point multiplier.  Assume that loads have a two-cycle 
latency, floating-point multiplication has a four-cycle latency and floating-point addition has a 
two-cycle latency. Write-back for floating-point registers takes one cycle.  Also assume that all 
functional units are fully pipelined and ignore any write back conflicts.  Give the number of 
cycles between the issue of the first load instruction and the issue of the final store, inclusive. 

Problem M3.4.B Static Scheduling 

Reorder the instructions in the code sequence to minimize the execution time.  Show the new 
instruction sequence and give the number of cycles this sequence takes to execute on the simple 
in-order pipeline. 

Problem M3.4.C Fewer Registers 

Rewrite the code sequence, but now using only two floating-point registers.  Optimize for 
minimum run-time.  You may need to use temporary memory locations to hold intermediate 
values (this process is called register-spilling when done by a compiler).  List the code sequence 
and give the number of cycles this takes to execute. 
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Problem M3.4.D Register renaming and dynamic scheduling 

Simulate the effect of running the original code on a single-issue machine with register renaming 
and out-of-order issue. Ignore structural hazards apart from the single instruction decode per 
cycle. Show how the code is executed and give the number of cycles required. Compare it with 
results from optimized execution in M3.4.B. 

Problem M3.4.E Effect of Register Spills 

Now simulate the effect of running code you wrote in M3.4.C on the single-issue machine with 
register renaming and out-of-order issue from M3.4.D. Compare the number of cycles required 
to execute the program. What are the differences in the program and/or architecture that change 
the number of cycles required to execute the program?  You should assume that all load 
instructions before a store must issue before the store is issued, and load instructions after a store 
must wait for the store to issue. 
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Problem M3.5: Register Renaming Schemes 

This problem requires the knowledge of Handout #10 (Out-of-Order Execution with ROB) and 
Lecture 11 and 12 (2005).  Please, read these materials before answering the following 
questions. 

Future File Scheme 
In order to eliminate the step of reading operands from the reorder buffer in the decode stage, we 
can insert a second register file into the processor shown in Figure H10-A, called a future file. 
The future file contains the most up-to-date speculatively-executed value for a register, while the 
primary register file contains committed values. Each entry in the future file has a valid bit. A 
summary of the opearation is given below. 

RenameRename 
TableTable

Next toNext to
commitcommit

Register 
File 

< t, result > 

Ins# use exec op p1 src1 p2 src2 pd  dest  data 

R1 
R2 

tag 
valid bit 

t1 
t2 
. 
. 
tn 

R1 
R2 
R3 

: 

: 

R3 
R4 

Future 
File 

valid bit 

R1 
R2 
R3 

: 

Register 
File

Load 
Unit 

FU FU FU Store 
Unit 

< t, result >

Ins# use exec op p1 src1 p2 src2 pd  dest  dataIns# use exec op p1 src1 p2 src2 pd  dest  data

Commit 

R1 ti v 
R2

tag
valid bit

t1
t2
.
.
tn

R1 
R2
R3 

:

: :

R3
R4

Future
File

valid bit

R1 
R2
R3

:

NextNext
availableavailable

ReorderReorder
bufferbuffer

Figure M3.5-B 

Only the decode and write-back stages have to change from the baseline implementation in 
Handout #10 to implement the future file, as described below: 
Decode: Rename table, register file, and future file are read simultaneously. If the rename table 
has the valid bit set for an operand, then the value has not yet been produced and the tag will be 
used. Otherwise, if the future file has a valid bit set for its entry, then use the future file value. 
Otherwise, use the register file value. The instruction is assigned a slot in the ROB (the ROB 
index is this instruction’s tag). If the instruction writes a register, its tag is written to the 
destination register entry in the rename table. 
Write-Back: When an instruction completes execution, the result, if any, will be written back to 
the data field in the reorder buffer and the pd bit will be set. Additionally, any dependent 
instructions in the reorder buffer will receive the value. If the tag in the rename table for this 
register matches the tag of the result, the future file is written with the value and the valid bit on 
the rename table entry is cleared. 
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Problem M3.5.A Finding Operands: Original ROB scheme 

Consider the original ROB scheme in Handout #10, and suppose the processor state is as given 
in Figure H10-A.  Assume that the following three instructions enter the ROB simultaneously in 
a single cycle, and that no instructions commit or complete execution in this cycle.  In the table 
below, write the contents of each instruction’s source operand entries (either the register value or 
a tag, t1, t2, etc., for both Src1 and Src2) and whether that entry came from the register file, the 
reorder buffer, the rename table, or the instruction itself.   

Instruction Src1 value 

Regfile, ROB, 
rename table, 
or instruction? Src2 value 

Regfile, ROB, 
rename table, or 
instruction? 

sub r5,r1,r3
addi r6,r2,4
andi r7,r4,3 

Problem M3.5.B Finding Operands: Future File Scheme 

In the future file scheme, explain why an instruction entering the ROB will never need to fetch 
either of its operands from the ROB. 

Problem M3.5.C Future File Operation 

Describe a situation in which an instruction result is written to the ROB but might not be written 
to the future file. Provide a simple code sequence to illustrate your answer. 

Problem M3.5.D Handling Branch Mispredictions 

In the original ROB scheme, a branch misprediction caused all instructions after the branch to be 
flushed from the ROB. Consider the following instruction sequence. 

ADD R1, R2, R3
SUB R4, R5, R6
BEQ R7, R8, L1  # Taken branch. 
XOR R9, R10, R11
ADD R1, R5, R9 

Assume that there are no delay slots in the ISA and that the branch is incorrectly predicted not-
taken. In the future file scheme, if all of the above instructions complete execution before the 
branch misprediction is detected, explain why simply flushing the mispredicted instructions is 
not sufficient for correct execution.  What should be done instead? 
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 Problem M3.6: Branch Prediction  

This problem will investigate the effects of adding global history bits to a standard branch 
prediction mechanism. In this problem assume that the MIPS ISA has no delay slots. 

Throughout this problem we will be working with the following program: 

loop:
LW R4, 0(R3) 

ADDI R3, R3, 4

SUBI R1, R1, 1


b1: 
BEQZ R4, b2
ADDI R2, R2, 1

b2: 
BNEZ R1, loop 

Assume the initial value of R1 is n (n>0). 

Assume the initial value of R2 is 0 (R2 holds the result of the program). 

Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit integers). 


All branch prediction schemes in this problem will be based on those covered in lecture.  We will 

be using a 2-bit predictor state machine, as shown below. 


taken 
00 10 

01 

11 
taken taken 

taken 

taken 
taken 

taken taken 

Figure M3.6-A. BP bits state diagram 

In state 1X we will guess not taken. In state 0X we will guess taken. 

Assume that b1 and b2 do not conflict in the BHT. 

Problem M3.6.A Program 

What does the program compute? That is, what does R2 contain when we exit the loop? 

18




Last updated: 
2/10/2006 4:34 PM 

Problem M3.6.B 2-bit branch prediction 

Now we will investigate how well our standard 2-bit branch predictor performs. Assume the 
inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,… etc.; i.e. the array 
elements exhibit an alternating pattern of 1's and 0's. Fill out Table M3.6-1 (note that the first 
few lines are filled out for you). What is the number of mispredicts? 

Table M3.6-1 contains an entry for every branch (either b1 or b2) that is executed. The Branch 
Predictor (BP) bits in the table are the bits from the BHT.  For each branch, check the 
corresponding BP bits (indicated by the bold entries in the examples) to make a prediction, then 
update the BP bits in the following entry (indicated by the italic entries in the examples). 

Problem M3.6.C Branch prediction with one global history bit 

Now we add a global history bit to the branch predictor, as described in lecture. Fill out Table 
M3.6-2, and again give the total number of mispredicts you get when running the program with 
the same inputs. 

Problem M3.6.D Branch prediction with two global history bits 

Now we add a second global history bit. Fill out Table M3.6-3. Again, compute the number of 
mispredicts you get for the same input. 

Problem M3.6.E Analysis I 

Compare your results from problems M3.6.B, M3.6.C, and M3.6.D. When do most of the 
mispredicts occur in each case (at the beginning, periodically, at the end, etc.)? What does this 
tell you about global history bits in general? For large n, what prediction scheme will work best? 
Explain briefly. 

Problem M3.6.F Analysis II 

The input we worked with in this problem is quite regular. How would you expect things to 
change if the input were random (each array element were equally probable 0 or 1). Of the three 
branch predictors we looked at in this problem, which one will perform best for this type of 
input? Is your answer the same for large and small n? 

What does this tell you about when additional history bits are useful and when they hurt you? 
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System 
State 

Branch Predictor Branch Behavior 

PC R3/R4 b1 bits b2 bits Predicted Actual 

b1 4/1 10 10 N N 
b2 4/1 10 10 N T 
b1 8/0 10 11 N T 
b2 8/0 11 11 N T 
b1 12/1 11 00 
b2 12/1 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 

Table M3.6-1 
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System 
State 

Branch Predictor Behavior 

PC R3/R4 history b1 bits b2 bits 
Predicted Actualbit set 0 set 1 set 0 set 1 

b1 4/1 1 10 10 10 10 N N 
b2 4/1 0 10 10 10 10 N T 
b1 8/0 1 10 10 11 10 
b2 8/0 
b1 12/1 
b2 12/1 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 

Table M3.6-2 
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System 
State 

Branch Predictor Behavior 

PC R3/R4 history b1 bits b2 bits 
Predicted Actualbits set 00 set 01 set 10 set 11 set 00 set 01 set 10 set 11 

b1 4/1 11 10 10 10 10 10 10 10 10 N N 
b2 4/1 01 10 10 10 10 10 10 10 10 N T 
b1 8/0 10 10 10 10 10 10 11 10 10 
b2 8/0 
b1 12/1 
b2 12/1 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 

Table M3.6-3 
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Problem M3.7: Branch Prediction  

Consider a CPU with a pipeline pictured on 
the right. The first stage of the pipeline 
fetches the instruction. The second stage of 
the pipeline recognizes branch instructions 
and performs branch prediction using a 
BHT. If the branch is predicted to be taken, 
it forwards the decoded target of the branch 
to the first stage, and kills the instruction in 
the first stage. The fifth stage of the 
pipeline reads the registers and resolves the correct target of the branch. If the branch target 
was mispredicted, the correct target is forwarded to the first stage, and all instructions inbetween 
are killed. The remainder of the stages finish the computation of the instruction. 

S1 Fetch 

S2 

S3 

S4 

Branch Address Calc 

S5 Register File Read/Branch Resolve 

Remainder of execute pipeline 

history reg r 

T

history bit
last branch was taken or not. There is 
only , so the 

not used for selecting the proper table 
in the table is 

Right, as pictured above. The setup of 

NTW 

taken 
¬ taken 

taken 

taken 

taken 
NTRTR 

TW 

¬ taken 

¬ taken¬ taken 

1-bit global branch 
iste

aken/¬Taken? 

2 2-bit BHT entries The processor uses a single global 
 to remember whether the 

one line in the BHT
address of the branch instruction is 

labeled as TW for Take Wrong, TR 
for Take Right, NTW for do Not Take 
Wrong and NTR for do Not Take 

the BHT predictor is illustrated on the 

entry. Each entry

right. 
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In this question we will study execution of the following loop.  This processor has no branch 
delay slots. You should assume that branch at address 1 is never taken, and that the branch at 
address 5 is always taken. 

Instruction 
Label 

Address Instruction 

LOOP 1 BEQ R2, R5, NEXT 
2 ADD R4, R4, 1 
3 MULT R3, R3, R4 

NEXT 4 MULT R2, R2, 3847 
5 BNEZ R4, LOOP 
6 NOP 
7 NOP 
8 NOP 
9 NOP 
10 NOP 

You should also disregard any possible structural hazards. The processor always runs at full 
speed, and there are no pipeline bubbles (except for those created by branches). 
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Problem M3.7.A 

Now we study how well the history bit works, when it is being updated by the fifth stage of the 
processor. The fifth stage also updates the BHT based on the result of a branch. The same BHT 
entry that was used to make the original prediction is updated. 

Please fill in the table below.  

You should fetch a new instruction on every cycle. You should fill in the Branch Prediction and 
Prediction Correct? columns for branch instructions only (note, the branch prediction actually 
happens one cycle after the instruction is fetched). You should fill in Branch Predictor State 
columns whenever they are updated. Please circle instructions which will be committed. 

The first three committing instructions fetched have been filled in for you. You should enter 
enough instructions to add 8 more committing instructions. You may not need all the rows in 
the table. 

Cycle Instruction Branch Prediction 
Branch Predictor State 

Branch Last Branch Last Branch Not 
Fetched Prediction Correct? History Taken Predictor Taken Predictor 

0 - - T TW TW 
1 1 T N 
2 2 
3 4 
4 5 T Y 
5 6 NT NTR 
6 2 
7 3 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
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Problem M3.7.B 

Now we study how well the branch history bit works, when it is being updated speculatively 
by the second stage of the processor. If the branch is mispredicted, the fifth stage sets the branch 
history bit to the correct value. Finally, the fifth stage also updates the BHT based on the result 
of a branch. The same BHT entry that was used to make the original prediction is updated. 

Please fill in table below. The notation in the table should be same as in Question M3.7.A. 

The first three committing instructions fetched have been filled in for you. You should enter 
enough instructions to add 8 more committing instructions. You may not need all the rows in 
the table. 

Cycle Instruction Branch Prediction 
Branch Predictor State 

Branch Last Branch Last Branch Not 
Fetched Prediction Correct? History Taken Predictor Taken Predictor 

0 - - T TW TW 
1 1 T N 
2 2 T 
3 4 
4 5 T Y 
5 6 NT NTR 
6 2 
7 3 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
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Problem M3.8: Branch Prediction 

In this question we explore the changes and impact of a branch predictor in the 5-stage pipeline. 

Figures M3.8-A and M3.8-B are provided for the questions in this part (M3.8).   

Figure M3.8-A shows the logic and state required to implement branch and jump instructions in 
the standard 5-stage pipeline.  The design does not implement branch delay slots and assumes 
that branches are resolved in the decode stage. The diagram has been redrawn for clarity but is 
logically equivalent to the one used in Lecture 6 (2005). 

Figure M3.8-B adds a PC predictor to the design. The predictor predicts the next PC based on 
the current PC. If in the Decode stage it is found that the prediction was incorrect, the fetch 
stage is flushed and the PC is overwritten with the correct Next PC.  If the Decode stage finds 
that the prediction was correct, then the fetch stage continues predicting the next PC. 
Furthermore, we have provided some unspecified input wires to update the predictor, when 
needed. 

The following questions are about the design in Figure M3.8-B. 

Problem M3.8.A 

What is the logic in the “Mispredict” block?  (Write your answer as an equation, e.g. (NextPC 
== 17) & (IRE == BEQZ)). 

Mispredict = 

Problem M3.8.B 

What is the logic, if any, in the block that feeds the select of the IRE register? You may use any 
of the labeled signals. Explain. 

Problem M3.8.C 

Is any change needed in the stall signal? Again you may use any of the labeled signals if needed 
to generate the new stall signal from the old one. Explain. 
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Problem M3.8.D 

Does the processor function correctly if the PC Predict always mispredicts?  Explain briefly. If 
your answer is “no” provide an example when it fails. 

Problem M3.8.E 

In this question we are concerned with the performance (i.e. cycle count to execute a program) 
compared to the pipeline that does not have the “PC Predict” block.  Suppose the PC Predict 
always predicts “PC + 4”. The design performs identically in all cases except when the target is 
PC+4. Does the design with the PC Predict perform better or worse in the special case? Explain. 

Better / Worse  

Problem M3.8.F 

Suppose the PC Predict can have maximum of 1K bits of storage and some small amount of 
logic. Give the best scheme you can design to implement PC Predict correctly. You will be 
judged on the quality of your solution, in addition to its correctness. Your solution must 
describe/discuss: 
- The method for computing the predicted PC  
- Common cases were it performs better than the simple scheme (i.e. “PC+4”) 
- Common cases, if any, were it performs worse than the simple scheme (i.e. “PC+4”) 
- The method for updating the prediction. 

Problem M3.8.G 

Can you think of any way to bring down the cost of executing an unconditional jump instruction 
to zero (not 1)? 
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Figure M3.8-A. 5 stage MIPS pipeline 
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Figure M3.8-B. 5 stage MIPS pipeline with a branch predictor 
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Problem M3.9: Fetch Pipelines  

Ben is designing a deeply-pipelined single-issue in-order MIPS processor.  The first half of his 
pipeline is as follows: 

PC PC Generation 
F1 ICache AccessF2 
D1 Instruction DecodeD2 
RN Rename/Reorder 
RF Register File Read 
EX Integer Execute 

There are no branch delay slots and currently there is no branch prediction hardware 
(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage). 
Subroutine calls use JAL/JALR (jump and link).  These instructions write the return address 
(PC+4) into the link register (r31). Subroutine returns use JR r31. Assume that PC 
Generation takes a whole cycle and that you cannot bypass anything into the end of the PC 
Generation phase. 

Problem M3.9.A Pipelining Subroutine Returns 

Immediately after what pipeline stage does the processor know that it is executing a subroutine 
return instruction?  Immediately after what pipeline stage does the processor know the 
subroutine return address?  How many pipeline bubbles are required when executing a 
subroutine return? 

Problem M3.9.B Adding a BTB 

Louis Reasoner suggests adding a BTB to speed up subroutine returns.  Why doesn’t a standard 
BTB work well for predicting subroutine returns? 
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Problem M3.9.C Adding a Return Stack 

Instead of a BTB, Ben decides to add a return stack to his processor pipeline.  This return stack 
records the return addresses of the N most recent subroutine calls. This return stack takes no 
time to access (it is always presenting a return address). 
Explain how this return stack can speed up subroutine returns.  Describe when and in which 
pipeline stages return addresses are pushed on and popped off the stack. 

Problem M3.9.D Return Stack Operation 

Fill in the pipeline diagram below corresponding to the execution of the following code on the 
return stack machine: 

A: JAL B 
A+1: 

A+2: 

… 


B: JR r31 
B+1: 

B+2: 

… 


Make sure to indicate the instruction that is being executed.  The first two instructions are 
illustrated below.  The crossed out stages indicate that the instruction was killed during those 
cycles. 

instruction time→ 
A 

A+1 
PC F1 F2 D1 D2 RN RF EX 

PC F1 F2 D1 D2 RN RF EX 
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Problem M3.9.E Handling Return Address Mispredicts 

If the return address prediction is wrong, how is this detected? How does the processor recover, 
and how many cycles are lost (relative to a correct prediction)?   

Problem M3.9.F Further Improving Performance 

Describe a hardware structure that Ben could add, in addition to the return stack, to improve the 
performance of return instructions so that there is usually only a one-cycle pipeline bubble when 
executing subroutine returns (assume that the structure takes a full cycle to access). 
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 Problem M3.10: Managing Out-of-order Execution  

This problem investigates the operation of a superscalar processor with branch prediction, 
register renaming, and out-of-order execution.  The processor holds all data values in a physical 
register file, and uses a rename table to map from architectural to physical register names.  A 
free list is used to track which physical registers are available for use.  A reorder buffer (ROB) 
contains the bookkeeping information for managing the out-of-order execution (but, it does not 
contain any register data values).  These components operate as described in Lecture 14 (2005). 

When a branch instruction is encountered, the processor predicts the outcome and takes a 
snapshot of the rename table.  If a misprediction is detected when the branch instruction later 
executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling 
back the “next available” pointer, updating the free list, and restoring the earlier rename table 
snapshot. 

We will investigate the execution of the following code sequence (assume that there is no 
branch-delay slot): 

loop: lw r1, 0(r2) # load r1 from address in r2 
addi r2, r2, 4 # increment r2 pointer
beqz r1, skip # branch to “skip” if r1 is 0
addi r3, r3, 1 # increment r3 


skip: bne r2, r4, loop # loop until r2 equals r4 


The diagram for Question M3.10.A on the next page shows the state of the processor during 
execution of the given code sequence.  An instance of each instruction in the loop has been 
issued into the ROB (the beqz instruction has been predicted not-taken), but none of the 
instructions have begun execution.  In the diagram, old values which are no longer valid are 
shown in the following format: . The rename table snapshots and other bookkeeping 
information for branch misprediction recovery are not shown. 
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Problem M3.10.A 

Assume that the following events occur in order (though not necessarily in a single cycle): 
Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written 

into the ROB (note that the bne instruction has been predicted taken). 
Step 2. All instructions which are ready after Step 1 execute, write their result to the physical 

register file, and update the ROB. Note that this step only occurs once. 
Step 3. As many instructions as possible commit. 

Update the diagram below to reflect the processor state after these events have occured. 
Cross out any entries which are no longer valid.  Note that the “ex” field should be marked 
when an instruction executes, and the “use” field should be cleared when it commits.  Be sure to 
update the “next to commit” and “next available” pointers. If the load executes, assume that 
the data value it retrieves is 0. 

Physical Regs 
8016 p 
6823 p 
8000 p 

7 p 

Free ListRename Table 
P0R1 P4 
P1R2 P5 
P2R3 P6 

P7P3R4 P0 
P8 

P5 
P4 

P9 
P6 
P7 
P8 
P9 …

 


x lw p P2 r1 P1 P4 
x addi p P2 r2 P2 P5 
x beqz P4 
x addi p P3 r3 P3 P6 
x bne P5 p P0 

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to → 
commit 

next 
available → 
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Problem M3.10.B 

Assume that after the events from Question M3.10.A have occurred, the following events occur 
in order: 

Step 1. The processor detects that the beqz instruction has mispredicted the branch outcome, 
and recovery action is taken to repair the processor state.   

Step 2. The beqz instruction commits. 
Step 3. The correct next instruction is fetched and is written into the ROB. 

Fill in the diagram below to reflect the processor state after these events have occurred. 
Although you are not given the rename table snapshot, you should be able to deduce the 
necessary information from the diagram from Question M3.10.A.  You do not need to show 
invalid entries in the diagram, but be sure to fill in all fields which have valid data, and update 
the “next to commit” and “next available” pointers. Also make sure that the free list contains 
all available registers. 

Physical Regs Free List 
P0 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 

Rename Table 
R1 
R2 
R3 
R4 

…
 


Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to 
commit 

next 
available 
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Problem M3.10.C 

Consider, (1) a single-issue, in-order processor with no branch prediction, and (2) a multiple-
issue, out-of-order processor with branch prediction. Assume that both processors have the same 
clock frequency.  Consider how fast the given loop executes on each processor, assuming that it 
executes for many iterations. 

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor 
compared to the out-of-order processor? 

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order 
processor compared to the in-order processor? 
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Problem M3.11: Exceptions and Register Renaming   

Ben Bitdiddle has decided to start Bentel Corporation, a company specializing in high-end x86 
processors to compete with Intel.  His latest project is the Bentium 4, a superscalar out-of-order 
processor with register renaming and speculative execution.     

The Bentium 4 has 8 architectural registers (EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI). 
In addition, the processor provides 8 internal registers T0-T7 not visible to the ISA that can be 
used to hold intermediary values used by microoperations (uops) generated by the microcode 
engine. The microcode engine is the decode unit and is used to generate uops for all the x86 
instructions. For example, the following register-memory x86 instruction might be translated 
into the following RISC-like uops: 

ADD Rd, Ra, offset(Rb) → LW  T0, offset(Rb) 

      ADD Rd, Ra, T0 


All 16 uop-visible registers are renamed by the register allocation table (RAT) into a set of 
physical registers (P0-Pn) as described in Lecture 14 (2005).  There is a separate shadow map 
structure that takes a snapshot of the RAT on a speculative branch in case of a misprediction. 
The block diagram for the front-end of the Bentium 4 is shown below: 

ROM 
Engine 

Uop Buffer 

Register 

Fetch 

to dispatch window and 
execution cores 

Decode 

uops 

x86 instructions

  Renaming 

 Instruction 

Note: the decode block is 
actually replicated in the 
Bentium 4 in order to decode 
multiple instructions per cycle 
(not shown in diagram) 
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Problem M3.11.A Recovering from Exceptions 

For the Bentium 4, if an x86 instruction takes an exception before it is committed, the machine 
state is reset back to the precise state that existed right before the excepting instruction started 
executing. This instruction is then re-executed after the exception is handled.  Ben proposes that 
the shadow map structure used for speculative branches can also be used to recover a precise 
state in the event of an exception.  Specify an implementable strategy for taking the least number 
of snapshots of the RAT that would still allow the Bentium 4 to implement precise exception 
handling. 

Problem M3.11.B Minimizing Snapshots 

Ben further states that the shadow map structure does not need to take a snapshot of all the 
registers in the Bentium 4 to be able to recover from an exception.  Is Ben correct or not?  If so, 
state which registers do not need to be recorded and explain why they are not necessary, or 
explain why all the registers are necessary in the snapshot. 

Problem M3.11.C Renaming Registers 

Assume the Bentium 4 has the same register renaming scheme as the Pentium 4, as described in 
Lecture 14. What is the minimum number of physical registers (P) that the Bentium 4 must have 
to allow register renaming to work?  Explain your answer. 
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