
Last updated:
2/10/2006 4:36 PM

Problem M5.1: VLIW Programming

Ben Bitdiddle and Louis Reasoner have started a new company called Transbeta® and are
designing a new processor named Titanium™. The Titanium processor is a single-issue in-order
VLIW processor with:

•	 2 load/store units. There is no cache. A load has a latency of 4 cycles but is fully

pipelined.

•	 1 integer ALU. single cycle
•	 1 floating-point multiplier. 3 cycles, fully pipelined
•	 1 floating-point adder. 2 cycles, fully pipelined
•	 1 branch unit with no delay slots and 100% branch prediction accuracy
•	 128 GPRs and 128 FPRs

A single Titanium instruction can issue to all the above units simultaneously. By definition, the
operations in a Titanium instruction are independent. Every operation in a Titanium instruction
reads the operands and issues simultaneously. Thus, if one operation is waiting for a result of a
previous Titanium instruction, the entire Titanium instruction is stalled in the decode stage.

Everything is fully bypassed. Each functional unit has a dedicated writeback port, so there is
never any contention. Writing to the same register multiple times in the same instruction is
disallowed in the Titanium ISA. WAW hazards will also cause stalls. The Titanium ISA
resembles MIPS, except that there can be up to 6 instructions on each line separated by
semicolons.

You have been hired to work on some hand-optimized math libraries. The most important of
these is the dot-product, given by Σ(Xn×Yn).

Problem M5.1.A

Ben has translated dot-product from MIPS to the Titanium ISA

// R1 – pointer to X
// R2 – pointer to Y
// R5 - n
// R3 - temp
// F4 - temp
// F6 – result

MOVI2FP F6,R0
loop:

L.S F3,0(R1); L.S F4,0(R2); ADDI R5,R5,#-1
MUL.S F3,F3,F4; ADDI R1,R1,#4
ADD.S F6,F6,F3; ADDI R2,R2,#4; BNEZ R5,loop

Each iteration takes 9 cycles but the program averages 8 cycles per vector element. Alyssa P.
Hacker says that it can be done in 1 cycle per vector element for long vectors. Show Ben and
Louis what the code should be. Louis isn’t too bright so make sure your code is well commented.

Last updated:
2/10/2006 4:36 PM

Problem M5.2: Trace Scheduling

Trace scheduling is a compiler technique that increases ILP by removing control dependencies,
allowing operations following branches to be moved up and speculatively executed in parallel
with operations before the branch. It was originally developed for statically scheduled VLIW
machines, but it is a general technique that can be used in different types of machines and in this
question we apply it to a single-issue MIPS processor.

Consider the following piece of C code (% is modulus) with basic blocks labeled:

A
B

if (data % 8 == 0)
X = V0 / V1;

else
C
D
E

X = V2 / V3;
if (data % 4 == 0)
Y = V0 * V1;

else
F
G

Y = V2 * V3;

Assume that data is a uniformly distributed integer random variable that is set sometime before
executing this code.

The program’s control flow graph is The decision tree is

A

B C

D

E F

G

A

B C

D D

EE FF

G G G GPath
probabilities
for 5.A:

A control flow graph and the decision tree both show the possible flow of execution through
basic blocks. However, the control flow graph captures the static structure of the program, while
the decision tree captures the dynamic execution (history) of the program.

Page 2 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.2.A

On the decision tree, label each path with the probability of traversing that path. For example,
the leftmost block will be labeled with the total probability of executing the path ABDEG.
(Hint: you might want to write out the cases). Circle the path that is most likely to be executed.

Problem M5.2.B

This is the MIPS code (no delay slots):

A: 	lw r1, data
andi r2, r1, 7 ;; r2 <- r1%8
bnez r2, C

B: 	 div r3, r4, r5 ;; X <- V0/V1
j D

C: 	 div r3, r6, r7 ;; X <- V2/V3
D: 	 andi r2, r1, 3 ;; r2 <- r1%4

bnez r2, F
E: 	 mul r8, r4, r5 ;; Y <- V0*V1

j G
F: 	 mul r8, r6, r7 ;; Y <- V2*V3
G:
This code is to be executed on a single-issue processor without branch speculation. Assume that
the memory, divider, and multiplier are all separate, long latency, unpipelined units that can be
run in parallel. Rewrite the above code using trace scheduling. Optimize only for the most
common path. Just get the other paths to work. Don’t spend your time performing any other
optimizations. Ignore the possibility of exceptions. (Hint: Write the most common path first
then add fix-up code.)

Problem M5.2.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.
Approximately how many cycles does the original code take? (ignore small constants)
Approximately how many cycles does the new code take in the best case?

Page 3 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.3: VLIW machines

The program we will use for this problem is listed below (In all questions, you should assume

that arrays A, B and C do not overlap in memory).

:

C code

for (i=0; i<328; i++) {
A[i] = A[i] * B[i];
C[i] = C[i] + A[i];

}

In this problem, we will deal with the code sample on a VLIW machine. Our machine will have
six execution units:
- two ALU units, latency one cycle, also used for branch operations
- two memory units, latency three cycles, fully pipelined, each unit can perform either a store

or a load
- two FPU units, latency four cycles, fully pipelined, one unit can perform fadd operations,

the other fmul operations.
Our machine has no interlocks. The result of an operation is written to the register file
immediately after it has gone through the corresponding execution unit: one cycle after issue for
ALU operations, three cycles for memory operations and four cycles for FPU operations. The old
values can be read from the registers until they have been overwritten.

Below is a diagram of our VLIW machine:

Int Op 2 Mem Op 1 Mem Op 2 FP ADD FP MULTInt Op 1

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Two Floating-Point Units,
Four Cycle Latency

Page 4 of 30

Last updated:
2/10/2006 4:36 PM

The program for this problem translates to the following VLIW operations:

loop: 1. ld f1, 0(r1) ; f1 = A[i]

2. ld f2, 0(r2) ; f2 = B[i]

3. fmul f4, f2, f1 ; f4 = f1 * f2

4. st f4, 0(r1) ; A[i] = f4

5. ld f3, 0(r3) ; f3 = C[i]

6. fadd f5, f4, f3 ; f5 = f4 + f3

7. st f5, 0(r3) ; C[i] = f5

8. add r1, r1, 4 ; i++

9. add r2, r2, 4

10. add r3, r3, 4

11. add r4, r4, -1

12. bnez r4, loop ; loop

Problem M5.3.A

Table M5.3-1, on the next page, shows our program rewritten for our VLIW machine, with
some operations missing (instructions 2, 6 and 7). We have rearranged the instructions to
execute as soon as they possibly can, but ensuring program correctness. Please fill in missing
operations. (Note, you may not need all the rows)

Problem M5.3.B

How many cycles are required to complete one iteration of the loop in steady state? What is the
performance (flops/cycle) of the program?

Problem M5.3.C

How many VLIW instructions would the smallest software pipelined loop require? Explain
briefly. Ignore the prologue and the epilogue. Note: You do not need to write the software
pipelined version. (You may consult Table M5.3-1 for help)

Problem M5.3.D

What would be the performance (flops/cycle) of the program? How many iterations of the loop
would we have executing at the same time?

Page 5 of 30

Last updated:
2/10/2006 4:36 PM

ALU1 ALU2 MU1 MU2 FADD FMUL
Add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1)

Add r3, r3, 4 add r4, r4, -1 ld f3, 0(r3)

fmul f4, f2, f1

st f4, -4(r1)

bnez r4, loop

Table M5.3-1: VLIW Program

Page 6 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.3.E

If we unrolled the loop once, would that give us better performance? How many VLIW
instructions would we need for optimal performance? How many flops/cycle would we get?
Explain.

Problem M5.3.F

What is the maximal performance in flops/cycle for this program on this architecture? Explain.

Problem M5.3.G

If our machine had a rotating register file, could we use fewer instructions than in Question
M5.3.F and still achieve optimal performance? Explain.

Problem M5.3.H

Imagine that memory latency has just increased to 100 cycles. Circle how many instructions
(approximately) an optimal loop would require. (no rotating register file, ignoring
prologue/epilogue). Explain briefly.

5 50 100 200

Problem M5.3.I

Now our processor still has memory latency of up to 100 cycles when it needs to retrieve data
from main memory, but only 3 cycles if the data comes from the cache. Thus a memory
operation can complete and write its result to a register anywhere between 3 and 100 cycles after
being issued. Since our processor has no interlocks, other instructions will continue being issued.
Thus, given two instructions, it is possible for the instruction issued second to complete and
write back its result first. Circle how many instructions (approximately) are required for an
optimal loop. Explain briefly.

5 50 100 200

Page 7 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.4: VLIW & Vector Coding

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a
vector.

for (i = 0; i < N; i++) {
if (A[i] < 0)

A[i] = -A[i];
}

Problem M5.4.A

Ben is working with an in-order VLIW processor, which issues two MIPS-like operations per
instruction cycle. Assume a five-stage pipeline with two single-cycle ALUs, memory with one
read and one write port, and a register file with four read ports and two write ports. Also assume
that there are no branch delay slots, and loads and stores only take one cycle to complete. Turn
Ben’s loop into VLIW code. A and N are 32-bit signed integers. Initially, R1 contains N and R2
points to A[0]. You do not have to preserve the register values. Optimize your code to improve
performance but do not use loop unrolling or software pipelining. What is the average number
of cycles per element for this loop, assuming data elements are equally likely to be negative and
non-negative?

Problem M5.4.B

Ben wants to remove the data-dependent branches in the assembly code by using predication. He
proposes a new set of predicated instructions as follows:

1) Augment the ISA with a set of 32 predicate bits P0-P31.
2) Every standard non-control instruction now has a predicated counterpart, with the following

syntax:

(pbit1) OPERATION1 ; (pbit2) OPERATION2

 (Execute the first operation of the VLIW instruction if pbit1 is set and execute the second
operation of the VLIW instruction if pbit2 is set.)

3) Include a set of compare operations that conditionally set a predicate bit:

CMPLTZ pbit,reg ; set pbit if reg < 0

CMPGEZ pbit,reg ; set pbit if reg >= 0

CMPEQZ pbit,reg ; set pbit if reg == 0

CMPNEZ pbit,reg ; set pbit if reg != 0

Page 8 of 30

Last updated:
2/10/2006 4:36 PM

Eliminate all forward branches from Question M5.4.A with the new predicated operations. Try
to optimize your code but do not use software pipelining or loop unrolling.

What is the average number of cycles per element for this new loop? Assume that the predicate-
setting compares have single cycle latency (i.e., behave similarly to a regular ALU instruction
including full bypassing of the predicate bit).

Problem M5.4.C

Unroll the predicated VLIW code to perform two iterations of the original loop before each
backwards branch. You should use software pipelining to optimize the code for both
performance and code density. What is the average number of cycles per element for large N?

Problem M5.4.D

Now Ben wants to work with a vector processor with two lanes, each of which has a single-cycle
ALU and a vector load-store unit. Write-back to the vector register file takes a single cycle.
Assume for this part that each vector register has at least N elements.

Ben can also eliminate branches from his code by using vector masks. He wants to introduce a
vector mask register as follows:

1) Augment the ISA with a vector mask register, VM.
2) Every vector instruction now executes each element operation only if the corresponding bit

in the mask register set
3) Include compare operations that conditionally set the mask register:

S--V V1,V2 	 Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If condition is
S--SV F0,V1 	 true, put a 1 in the corresponding bit vector; otherwise put 0. Put resulting

bit vector in vector-mask register (VM). The instruction S--SV performs
the same compare but using a scalar value as one operand.

Vectorize Ben’s C loop, and replace all branches using vector masks. What is the average
number of cycles per element for this loop in the steady state for a very large value of N?

Problem M5.4.E
Modify the code from Part M5.4.D to handle the case when each vector register has m elements,
where m may be less than N and is not necessarily a factor of N.

Page 9 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.5: Predication and VLIW

Problem M5.5.A

Consider the following code:

l.s f1, 0(r1) ; f1 = *r1
seq.s r5, f10, f1 ;
bneq f1, f10, else ; if f1==f10
add.s f2, f1, f11 ; f2 = f1 + f11
b if_end ; else

else: add.s f2, f1, f12 ; f2 = f1 + f12
if_end: s.s f2, 0(r2) ; *r2 = f2

Convert the code above to use predication rather than conditional branches. You should use the
CMPLTZ, CMPGEZ, CMPEQZ or CMPNEZ instruction from Problem M5.4.B (2005) for
predication. You may use negative predication for instructions, e.g.:

(p1) add r1, r2, r3 ; if (p1) r1 = r2 + r3
(!p1) add r1, r2, r3 ; if (!p1) r1 = r2 + r3

Problem M5.5.B

Our VLIW processor, called Adamantium, is very similar to the Titanium processor from
Problem M5.1 (2005). Below are the details of our machine. Bold parts are different from
Titanium.

• 1 load/store unit. There is no cache. A load has a latency of 2 cycles and is fully pipelined.
• 1 integer ALU. Single cycle latency
• no floating-point multiplier unit
• 1 floating-point adder. 2 cycles, fully pipelined
• 1 branch unit with no delay slots and 100% branch prediction accuracy
• 128 GPRs, 128 FPRs and 128 predicate registers

Consider the following simple loop written in predicated MIPS assembler.

loop: l.s f1, 0(r1) ; f1 = *r1
cmpnez p1, f1 ; p1 = (f1 != 0)

(p1) add.s f2, f1, f1 ; if (p1) f2 = f1+f1
(p1) s.s f2, 0(r1) ; if (p1) *r1 = f2

addi r1, r1, #4 ; r1 += 4
bneq r1, r2, loop ; if (r1!=r2) goto loop

end:

On the next page, in Table M5.5-1, we have converted the code above into Adamantium code
and unrolled it twice. Complete a software pipelined version of this loop for Adamantium below
in Table M5.5-2. You should assume that the number of times the loop needs to execute is
divisible by the unrolling factor, thus the loop doesn’t need any fix-up code.

Page 10 of 30

Last updated:
2/10/2006 4:36 PM

Label integer op floating point add memory op branch
loop: l.s f1,0(r1)

l.s f3,4(r1)
addi r1, r1, #8 cmpnez p1, f1

cmpnez p3, f3
(p1) add.s f2, f1, f1
(p3) add.s f4, f3, f3

(p1) s.s f2, -8(r1)
(p3) s.s f4, -4(r1) bneq r1, r2, loop

Table M5.5-1

label integer op floating point add memory op branch
 l.s f1,0(r1)

 l.s f3,4(r1)

addi r1, r1, #8 cmpnez p1, f1

cmpnez p3, f3 beq r1, r2, epilog

loop:

bneq ,loop

epilog: (p1) add.s

(p3) add.s

 (p1) s.s

 (p3) s.s

Table M5.5-2

Page 11 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.6: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features:

• 32 elements per vector register
• 8 lanes
• One ALU per lane: 1 cycle latency
• One MULT per lane: 2 cycle latency, fully pipelined
• One LOAD/STORE unit per lane: 4 cycle latency, fully pipelined
• No dead time
• No support for chaining
• Scalar instructions execute on a separate 5-stage fully-bypassed pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses. Also, scalar operands of vector instructions are read in the Decode stage.

The program we will use for this problem is listed below (In all questions, you should assume
that arrays A, B and C do not overlap in memory.):

C code

for (i=0; i<328; i++) {
A[i] = A[i] * B[i];
C[i] = C[i] + A[i];

}

Page 12 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.6.A

Consider the implementation of the C-code on the vector machine that executes in a minimum
number of cycles. Assuming the following initial values, insert vector instructions to complete
the implementation.

o R1 points to A[0]
o R2 points to B[0]
o R3 points to C[0]
o R4 contains the value 328

ANDI R5, R4, 31 # 328 mod 32
MTC1 VLR, R5 # set VLR to remainder

loop:
LV V1, R1 # load A

LV V2, R2 # load B

SLL R7, R5, 3

ADD R1, R1, R7 # increment A ptr

ADD R2, R2, R7 # increment B ptr

ADD R3, R3, R7 # increment C ptr

SUB R4, R4, R5 # update loop counter

LI R5, 32 # reset VLR to max

MTC1 VLR, R5

BGTZ R4, loop

Page 13 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.6.B

Complete the pipeline diagram below, with loop code from Question M5.6.A on the baseline
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar
registers are available immediately, whenever needed. You may not require the entire length of
the table.

The following supplementary information explains the diagram:
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back ALL of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does
not block a scalar instruction from executing.
LV1 and LV2 refer to the first and second LV instructions in the loop.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV2 F D ⎯ ⎯ ⎯ R M1M2M3M4 W
LV2 R M1M2M3M4 W
LV2 R M1M2M3M4 W
LV2 R M1M2M3M4 W

Page 14 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.6.C

In this question, we analyze the performance benefits of chaining.

Vector chaining is done through the register file. An element can be read (R) on the same cycle
in which it is written back (W), or it can be read on any later cycle (the chaining is flexible).

Complete the pipeline diagram below, with loop code from Question M5.6.A on the chained
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar
registers are available immediately, whenever needed. You may not require the entire length of
the table.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV2 F D ⎯ ⎯ ⎯ R M1M2M3M4 W
LV2 R M1M2M3M4 W
LV2 R M1M2M3M4 W
LV2 R M1M2M3M4 W

Page 15 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.6.D

What is the performance (flops/cycle) of the program with chaining?

Problem M5.6.E

Would loop unrolling of the assembly code improve performance without chaining? Explain.
(You may rearrange the instructions when loop unrolling.)

Page 16 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.7: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features:

• 32 elements per vector register
• 8 lanes
• One ALU per lane: 1 cycle latency
• One load/store unit per lane: 4 cycle latency, fully pipelined
• No dead time
• No support for chaining
• Scalar instructions execute on a separate 5-stage pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses.

We consider execution of the following loop:

C code

for (i=0; i<320; i++) {
C[i] = A[i] + B[i] – 1;

}

assembly code

initial conditions:
R1 points to A[0]
R2 points to B[0]
R3 points to C[0]
R4 = 1
R5 = 320

loop:
LV V1, R1 # load A
LV V2, R2 # load B
ADDV V3, V1, V2 # add A+B
SUBVS V4, V3, R4 # subtract 1
SV R3, V4 # store C
ADDI R1, R1, 128 # incr. A pointer
ADDI R2, R2, 128 # incr. B pointer
ADDI R3, R3, 128 # incr. C pointer
SUBI R5, R5, 32 # decr. count
BNEZ R5, loop # loop until done

Page 17 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.7.A

Complete the pipeline diagram of the baseline vector processor running the given code.

The following supplementary information explains the diagram:
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back all of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file.
A stalled vector instruction does not block a scalar instruction from executing.
LV1 and LV2 refer to the first and second LV instructions in the loop.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV1 R M1M2M3M4 W
LV2 F D ⎯ ⎯ ⎯ R M1M2M3M4 W
LV2 R M1M2M3M4 W
LV2 R M1M2M3M4 W
LV2 R M1M2M3M4 W

ADDV F D ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ R X1 W
ADDV R X1 W
ADDV R X1 W
ADDV R X1 W
SUBVS F D ⎯

SUBVS
SUBVS
SUBVS

SV F D ⎯

SV
SV
SV

ADDI F D X M W
ADDI F D X M W
ADDI F D X M W
SUBI F D X M W
BNEZ F D X M W
LV1 F D ⎯

LV1
LV1
LV1

Page 18 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.7.B

In this question, we analyze the performance benefits of chaining and additional lanes. Vector
chaining is done through the register file and an element can be read (R) on the same cycle in
which it is written back (W), or it can be read on any later cycle (the chaining is flexible). For
this question, we always assume 32 elements per vector register, so there are 2 elements per lane
with 16 lanes, and 1 element per lane with 32 lanes.

To analyze performance, we calculate the total number of cycles per vector loop iteration by
summing the number of cycles between the issuing of successive vector instructions. For
example, in Question M5.7.A, LV1 begins execution in cycle 3, LV2 in cycle 7 and ADDV in
cycle 16. Therefore, there are 4 cycles between LV1 and LV2, and 9 cycles between LV2 and
ADDV.

Complete the following table. The first row corresponds to the baseline 8-lane vector processor
with no chaining. The second row adds flexible chaining to the baseline processor, and the last
two rows increase the number of lanes to 16 and 32.
(Hint: You should consider each pair of vector instructions independently, and you can ignore
the scalar instructions.)

number of cycles between
successive vector instructions total cycles

Vector processor
configuration

LV1,
LV2

LV2,
ADDV

ADDV,
SUBVS

SUBVS,
SV

SV,
LV1

per vector
loop iter.

8 lanes, no chaining 4 9

8 lanes, chaining

16 lanes, chaining

32 lanes, chaining

Page 19 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.7.C

Even with the baseline 8-lane vector processor with no chaining (used in Question M5.7.A), we
can improve performance using software loop-unrolling and instruction scheduling. As a first
step, we unroll two iterations of the loop and rename the vector registers in the second iteration:

loop:

I1: LV V1, R1 # load A

I2: LV V2, R2 # load B

I3: ADDV V3, V1, V2 # add A+B

I4: SUBVS V4, V3, R4 # subtract 1

I5: SV R3, V4 # store C

I6: ADDI R1, R1, 128 # incr. A pointer

I7: ADDI R2, R2, 128 # incr. B pointer

I8: ADDI R3, R3, 128 # incr. C pointer

I9: SUBI R5, R5, 32 # decr. count

I10: LV V5, R1 # load A

I11: LV V6, R2 # load B

I12: ADDV V7, V5, V6 # add A+B

I13: SUBVS V8, V7, R4 # subtract 1

I14: SV R3, V8 # store C

I15: ADDI R1, R1, 128 # incr. A pointer

I16: ADDI R2, R2, 128 # incr. B pointer

I17: ADDI R3, R3, 128 # incr. C pointer

I18: SUBI R5, R5, 32 # decr. count

I19: BNEZ R5, loop # loop until done

Reorder the instructions in the unrolled loop to improve performance on the baseline vector
processor (your solution does not need to be optimal).
Provide a valid ordering by listing the instruction numbers below (a few have already been filled
in for you). Filling in the “Instruction” field is optional. You may assume that the A, B and C
arrays do not overlap.

Instr. Number Instruction
I1 LV V1, R1
I2 LV V2, R2

I15 ADDI R1, R1, 128
I16 ADDI R2, R2, 128
I17 ADDI R3, R3, 128
I9 SUBI R5, R5, 32
I18 SUBI R5, R5, 32
I19 BNEZ R5, loop

Page 20 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.8: Vectorizing memcpy and strcpy

Ben Bitdiddle has bought a state-of-the-art vector machine, the Zirconium™, which has vector
registers holding up to 32 elements, and has decided to vectorize his C library functions. As a
starting point, he vectorizes the C function memcpy. The specification for memcpy is given as:

/* copy n words from ct to s, and return s. */
/* The actual C copies one byte at a time. */
/* Our version copies one word at a time. */
void *memcpy(void *s, void *ct, size_t n)

Ben implements memcpy in the following fashion, assuming s, ct, and n are in registers R1,
R2, and R3 respectively. Assume no delay slots.

ADD
ADD
ANDI
MTC1

loop:
LV
SV
SUB
SLLI
ADD
ADD
ADDI
MTC1
BNEZ

R5,R1,R0
R4,R2,R0
R6,R3,#31
VLR,R6

V1,R4
R5,V1
R3,R3,R6
R6,R6,#2
R4,R4,R6
R5,R5,R6
R6,R0,#32
VLR,R6
R3,loop

; store destination address in R5
; store source address in R4
; N % 32
; put length in vector length register

; subtract elements

; bump source pointer
; bump destination pointer

; reset to full length
; any more to do?

Problem M5.8.A

The Zirconium processor has one load/store unit with a single lane that is fully pipelined with a
latency of 10 cycles and dead time of 10 cycles. Instructions do not need to spend an extra cycle
writing back values. All scalar instructions are executed on a separate 5-stage pipelined fully-
bypassed datapath. Therefore, execution of scalar instructions and vector instructions maybe
overlapped. How many cycles are required to copy each element when a very long memory
vector is copied, i.e., in steady state?

Page 21 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.8.B

Ben’s next target is strcpy, defined as follows:

/* copy string ct to string s, including ‘\0’ and return s */
/* The actual C copies one byte at time. */
/* Our version copies one word at a time. */
void *strcpy(void *s, void *ct)

The difference between strcpy and memcpy is that strcpy terminates when it sees the string
terminating character ‘\0’ while memcpy copies a given length.

Ben makes several attempts to vectorize the code, but gives up deciding that it is not
vectorizable. Alyssa, however, informs Ben that this function can be vectorized using some
additional types of vector instructions listed below:

CLZM R1,VM 	Counts the number of leading 0s in the vector-mask register VM and puts
the result in R1. For example, if the contents of VM are 0001010...000,
clzm R1,VM puts 3 into R1.

S--V V1,V2 	 Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If condition is
S--SV F0,V1 	 true, put a 1 in the corresponding bit vector; otherwise put 0. Put resulting

bit vector in vector-mask register (VM). The instruction S--SV performs
the same compare but using a scalar value as one operand.

Given the additional instructions, help Ben write vectorized code for the Zirconium processor.
Assume s and ct are in register R1 and R2 respectively. The Zirconium processor does not have
virtual memory and does not trap on memory protection violations on vector memory loads. Also
assume that a string must be word-aligned. The terminating character must start at a word
boundary and the remaining 3 bytes after the terminating character must be 0x0. (Hint: The
ASCII value of ‘\0’ is 0.)

Problem M5.8.C

Compare the performance of vectorized memcpy and vectorized strcpy with and without
vector chaining. Specifically, how many cycles is required to transfer one element in steady
state? Assume there is one vector compare unit with one lane and one cycle latency that
compares whether two values are equal.

Page 22 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.9: Performance of Vector Machines

The vector processor Germanium™ has a vector addition and a vector multiply unit with the
following attributes:

1) Vector registers have 32 elements. The vector register file supports 2 read ports and 1 write
port for each addition unit and multiplication unit.

2) The vector addition unit has a 2 cycle latency and is fully pipelined.

3) The vector multiplication unit has a 3 cycle latency and is fully pipelined.

You are now given the following code:

I1: ADDV V3,V2,V1

I2: ADDV V4,V2,V1

I3: MULTV V5,V4,V3

Note: All vectors are 32 elements in length.

Problem M5.9.A

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8
lanes, 2 cycle dead time, and no vector chaining. Instruction fetch takes one cycle, as does
instruction decode (unless the instruction is stalled). Reading data from the register file also takes
one cycle. Use F for fetch, D for Decode, R for Vector register read and W for write back.

How many cycles does the given code take to execute? Count execution time as the number of
cycles from when the first result is written to when the last result is written (inclusive).

For example, the pipeline diagram for ADDV V3,V2,V1 and vector lengths of 24 elements, is
shown below. Because we need to do 24 operations using 8 lanes, the vector register file should
be read three times. X1 is the first stage of addition unit and X2 is the second. At cycle 6, the
results of the first 8 operations are written back. This instruction takes 3 cycles to execute.

Time

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
F D R X1 X2 W

R X1 X2 W
R X1 X2 W

Page 23 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.9.B

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8
lanes, no dead time, and vector chaining. Vectoring chaining is done through the register file. A
vector unit can read an element from the register file in the same cycle it is being written back.
How many cycles does the given code take to execute?

Problem M5.9.C

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 16
lanes, no dead time, and vector chaining. How many cycles does the given code take to execute?

Page 24 of 30

Last updated:
2/10/2006 4:36 PM

 Problem M5.10: Multithreading

This problem evaluates the effectiveness of multithreading using a simple database benchmark.
The benchmark searches for an entry in a linked list built from the following structure, which
contains a key, a pointer to the next node in the linked list, and a pointer to the data entry.

struct node {

int key;

struct node *next;

struct data *ptr;

}

The following MIPS code shows the core of the benchmark, which traverses the linked list and
finds an entry with a particular key. Assume MIPS has no delay slots.

;

; R1: a pointer to the linked list

; R2: the key to find

;

loop: LW R3, 0(R1) ; load a key
LW R4, 4(R1) ; load the next pointer
SEQ R3, R3, R2 ; set R3 if R3 == R2
BNEZ R3, End ; found the entry
ADD R1, R0, R4
BNEZ R1, Loop ; check the next node

End:
; R1 contains a pointer to the matching entry or zero if
; not found

We run this benchmark on a single-issue in-order processor. The processor can fetch and issue
(dispatch) one instruction per cycle. If an instruction cannot be issued due to a data dependency,
the processor stalls. Integer instructions take one cycle to execute and the result can be used in
the next cycle. For example, if SEQ is executed in cycle 1, BNEZ can be executed in cycle 2. We
also assume that the processor has a perfect branch predictor with no penalty for both taken and
not-taken branches.

Problem M5.10.A

Assume that our system does not have a cache. Each memory operation directly accesses main
memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-blocking.
After the processor issues a memory operation, it can continue executing instructions until it
reaches an instruction that is dependent on an outstanding memory operation. How many cycles
does it take to execute one iteration of the loop in steady state?

Page 25 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.10.B

Now we add zero-overhead multithreading to our pipeline. A processor executes multiple
threads, each of which performs an independent search. Hardware mechanisms schedule a thread
to execute each cycle.

In our first implementation, the processor switches to a different thread every cycle using fixed
round robin scheduling (similar to CDC 6600 PPUs). Each of the N threads executes one
instruction every N cycles. What is the minimum number of threads that we need to fully utilize
the processor, i.e., execute one instruction per cycle?

Problem M5.10.C

How does multithreading affect throughput (number of keys the processor can find within a
given time) and latency (time processor takes to find an entry with a specific key)? Assume the
processor switches to a different thread every cycle and is fully utilized. Check the correct boxes.

Throughput Latency

Better

Same

Worse

Problem M5.10.D

We change the processor to only switch to a different thread when an instruction cannot execute
due to data dependency. What is the minimum number of threads to fully utilize the processor
now? Note that the processor issues instructions in-order in each thread.

Page 26 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.11: Multithreaded architectures

The program we will use is listed below (In all questions, you should assume that arrays A, B and
C do not overlap in memory.):

C code

for (i=0; i<328; i++) {
A[i] = A[i] * B[i];
C[i] = C[i] + A[i];

}

In this problem, we will analyze the performance of our program on a multi-threaded
architecture. Our machine is a single-issue, in-order processor. It switches to a different thread
every cycle using fixed round robin scheduling. Each of the N threads executes one instruction
every N cycles. We allocate the code to the threads such that every thread executes every Nth
iteration of the original C code (each thread increments i by N).

Integer instructions take 1 cycle to execute, floating point instructions take 4 cycles and memory
instructions take 3 cycles. All execution units are fully pipelined. If an instruction cannot issue
because its data is not yet available, it inserts a bubble into the pipeline, and retries after N
cycles.

Below is our program in assembly code for this machine.

loop: ld f1, 0(r1) ; f1 = A[i]

ld f2, 0(r2) ; f2 = B[i]

fmul f4, f2, f1 ; f4 = f1 * f2

st f4, 0(r1) ; A[i] = f4

ld f3, 0(r3) ; f3 = C[i]

fadd f5, f4, f3 ; f5 = f4 + f3

st f5, 0(r3) ; C[i] = f5

add r1, r1, 4 ; i++

add r2, r2, 4

add r3, r3, 4

add r4, r4, -1

bnez r4, loop ; loop

Problem M5.11.A

What is the minimum number of threads this machine needs to remain fully utilized issuing an
instruction every cycle for our program? Explain.

Page 27 of 30

Last updated:
2/10/2006 4:36 PM

Problem M5.11.B

What will be the peak performance in flops/cycle for this program? Explain briefly.

Problem M5.11.C

Could we reach peak performance running this program using fewer threads by rearranging the
instructions? Explain briefly.

Page 28 of 30

Name ___________________________

Problem M5.12: Multithreading

Consider a single-issue in-order multithreading processor that is similar to the one
described in Problem M5.10 (2005).

Each cycle, the processor can fetch and issue one instruction that performs any of the
following operations:

• load/store, 12-cycle latency (fully pipelined)
• integer add, 1-cycle latency
• floating-point add, 5-cycle latency (fully pipelined)
• branch, no delay slots, 1-cycle latency

The processor does not have a cache. Each memory operation directly accesses main
memory. If an instruction cannot be issued due to a data dependency, the processor
stalls. We also assume that the processor has a perfect branch predictor with no penalty
for both taken and not-taken branches.

You job is to analyze the processor utilizations for the following two thread-switching
implementations:

Fixed Switching: the processor switches to a different thread every cycle using fixed
round robin scheduling. Each of the N threads executes an instruction every N cycles.

Data-dependent Switching: the processor only switches to a different thread when an
instruction cannot execute due to a data dependency.

Each thread executes the following MIPS code:

loop: L.D F2, 0(R1) ; load data into F2
ADDI R1, R1, 4 ; bump source pointer
FADD F3, F3, F2 ; F3 = F3 + F2
BNE F2, F4, loop ; continue if F2 != F4

Problem M5.12.A

What is the minimum number of threads that we need to fully utilize the processor for
each implementation?

Fixed Switching: _________________ Thread(s)

Data-dependent Switching: _________________ Thread(s)

Page 29 of 30

Name ___________________________

Problem M5.12.B

What is the minimum number of threads that we need to fully utilize the processor for
each implementation if we change the load/store latency to 1-cycle (but keep the 5­
cycle floating-point add)?

Fixed Switching: _________________ Thread(s)

Data-dependent Switching: _________________ Thread(s)

Problem M5.12.C

Consider a Simultaneous Multithreading (SMT) machine with limited hardware
resources. Circle the following hardware constraints that can limit the total number of
threads that the machine can support. For the item(s) that you circle, briefly describe the
minimum requirement to support N threads.

(A) Number of Functional Unit:

(B) Number of Physical Registers:

(C) Data Cache Size:

(D) Data Cache Associatively:

Page 30 of 30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

