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Complex Pipelining: Motivation


Pipelining becomes complex when we want high 
performance in the presence of 

• Long latency or partially pipelined floating-point units 

• Multiple function and memory units 

• Memory systems with variable access time 
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Floating Point ISA


Interaction between the Floating point datapath 
and the Integer datapath is determined largely 
by the ISA 

MIPS ISA 
• separate register files for FP and Integer instructions 

the only interaction is via a set of move 
instructions (some ISA’s don’t even permit this) 

• separate load/store for FPR’s and GPR’s but both 
use GPR’s for address calculation 

• separate conditions for branches 
FP branches are defined in terms of condition codes 
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Floating Point Unit


Much more hardware than an integer unit 

Single-cycle floating point unit is a bad idea - why? 

• it is common to have several floating point units 

• it is common to have different types of FPU's 
Fadd, Fmul, Fdiv, ... 

• an FPU may be pipelined, partially pipelined or not 
pipelined 

To operate several FPU’s concurrently the register 
file needs to have more read and write ports 
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Function Unit Characteristics


fully

pipelined 1cyc

2 cyc 2 cyc

busy1cyc
 1cyc accept 

partially

pipelined
 acceptbusy 

Function units have internal pipeline registers


⇒ 	 operands are latched when an instruction 
enters a function unit 

⇒ 	 inputs to a function unit (e.g., register file) 
can change during a long latency operation 
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Realistic Memory Systems 

Latency of access to the main memory is 
usually much greater than one cycle and often 
unpredictable 

Solving this problem is a central issue in computer 
architecture 

Common approaches to improving memory 
performance 

• separate instruction and data memory ports 
⇒ no self-modifying code 

• caches  
single cycle except in case of a miss ⇒ stall 

• interleaved memory 
multiple memory accesses ⇒ bank conflicts 

• split-phase memory operations 
⇒ out-of-order responses 
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Complex Pipeline Structure 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 

October 19, 2005 
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Complex Pipeline Control Issues


• Structural conflicts at the write-back stage due to 
variable latencies of different function units 

• Structural conflicts at the execution stage if some 
FPU or memory unit is not pipelined and takes 
more than one cycle 

• Out-of-order write hazards due to variable 
latencies of different function units 

• How to handle exceptions? 
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Complex In-Order Pipeline


October 19, 2005 

• 
operations have same 
latency to W stage 
– 

oversubscribed (one inst. 
in & one inst. out every 
cycle) 

Commit 
Point 

PC 
Inst. 
Mem D Decode X1 W+ 

X2 WFadd X3FPRs X1 

X2 Fmul X3 

X2FDiv X3 

Unpipelined 
divider 

How to prevent increased 

slowing down single cycle 

Delay writeback so all 

Write ports never 

GPRs 

writeback latency from 

integer operations? 

Bypassing 

X2 
Data 

X3Mem 
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Complex In-Order Pipeline

Commit 
Point

PC
Inst. 
Mem D Decode X1 X2

Data 
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

• Stall pipeline on long 
latency operations, e.g., 
divides, cache misses 

• Exceptions handled in 
program order at commit 
point

How should we handle 
data hazards for very 
long latency operations?
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Superscalar In-Order Pipeline

• Fetch two instructions per 
cycle; issue both 
simultaneously if one is 
integer/memory and other 
is floating-point

• Inexpensive way of 
increasing throughput, 
examples include Alpha 
21064 (1992) & MIPS 
R5000 series (1996)

• Same idea can be extended 
to wider issue by 
duplicating functional units 
(e.g. 4-issue UltraSPARC) 
but register file ports and 
bypassing costs grow 
quickly

Commit 
Point

2
PC

Inst. 
Mem D

Dual
Decode X1 X2

Data 
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider
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Dependence Analysis
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Types of Data Hazards 

Consider executing a sequence of 
rk ← (ri) op (rj) 

type of instructions 

Data-dependence 
← 
← 

(r1) op (r2) Read-after-Writer3 
(r3) op (r4)  (RAW) hazard  r5 

Anti-dependence

r3 ← (r1) op (r2) 
r1 ← (r4) op (r5) 

Write-after-Read 
(WAR) hazard  

Output-dependence 
r3 ← (r1) op (r2) Write-after-Write 
r3 ← (r6) op (r7) (WAW) hazard 
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Detecting Data Hazards


Range and Domain of instruction i

R(i) = Registers (or other storage) modified by 

instruction i 
D(i) = Registers (or other storage) read by 

instruction i 

Suppose instruction j follows instruction i in the 
program order. Executing instruction j before the 
effect of instruction i has taken place can cause a 

RAW hazard if R(i) ∩ D(j) ≠ ∅ 

WAR hazard if D(i) ∩ R(j) ≠ ∅ 

WAW hazard if R(i) ∩ R(j) ≠ ∅ 
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Register vs. Memory
Arvind 

Data Dependence 

Data hazards due to register operands can be

determined at the decode stage but


data hazards due to memory operands can be

determined only after computing the effective 

address


store M[(r1) + disp1] ← (r2) 

load r3 ← M[(r4) + disp2]


Does (r1 + disp1) = (r4 + disp2) ? 
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Data Hazards: An Example


I

I

I

I1 DIVD f6, f6, f4 

2 LD 

3 MULTD f4 

4 DIVD 

I

f2, 

f2, 

f8, 

f10, f0, 

45(r3) 

f0, 

f6, f2 

5 SUBD 

I

f6 

6 ADDD f6, f8, f2 

RAW Hazards 
WAR Hazards 
WAW Hazards 
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Instruction Scheduling


DIVD f6, f6, 

f2, 45(r3) 

f2, 

f8, 

f10, f0, 

f6, 

f0, 

f6, 

f8, 

f4 I1 

LDI2 

MULTD f4 I3 

DIVD f2I4 

I5 SUBD f6 

ADDD f2I6 

Valid orderings: 
in-order I1 I2 I3 I4 I5 I6 

out-of-order I2 I1 I3 I4 I5 I6 

out-of-order I1 I2 I3 I5 I4 I6 

I6 

I2 

I4 

I1 

I5 

I3 
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Out-of-order Completion
Arvind 

In-order Issue 

Latency 
I1 DIVD f6, f6, f4 4 

I2 LD f2, 45(r3) 1 

I3 MULTD f0, f2, f4 3 

I4 DIVD f8, f6, f2 4 

I5 SUBD f10, f0, f6 1 

I6 ADDD f6, f8, f2 1 

in-order comp 1 2 1 2 3 4 3 5 4 6 5 6 

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6 
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Five-minute break to stretch your legs
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Scoreboard:

A Hardware Data Structure to 

Detect Hazards Dynamically
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CDC 6600 Seymour Cray, 1963 

•	 A fast pipelined machine with 60-bit words 
–	 128 Kword main memory capacity, 32 banks 

•	 Ten functional units (parallel, unpipelined) 
–	 Floating Point: adder, 2 multipliers, divider Image removed due to 
–	 Integer: adder, 2 incrementers, ... copyright restrictions. 

•	 Hardwired control (no microcoding) 
•	 Dynamic scheduling of instructions using a 

scoreboard 
•	 Ten Peripheral Processors for Input/Output 

–	 a fast multi-threaded 12-bit integer ALU 

• Very fast clock, 10 MHz (FP add in 4 clocks) 
Image removed due to • >400,000 transistors,  750 sq. ft., 5 tons, 

copyright restrictions.	 150 kW, novel freon-based  technology for 
cooling 

•	 Fastest machine in world for 5 years (until 
7600) 
–	 over 100 sold ($7-10M each) 

October 19, 2005 



6.823 L11-22 
Arvind 

IBM Memo on CDC6600 

Thomas Watson Jr., IBM CEO, August 1963: 
“Last week, Control Data ... announced the 

6600 system. I understand that in the 
laboratory developing the system there are 

only 34 people including the janitor. Of 
these, 14 are engineers and 4 are 
programmers... Contrasting this modest 
effort with our vast development activities, 

I fail to understand why we have lost our 
industry leadership position by letting 
someone else offer the world's most 
powerful computer.”


To which Cray replied: “It seems like Mr. Watson 
has answered his own question.” 

October 19, 2005 
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Complex Pipeline


October 19, 2005 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing? 
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When is it Safe to Issue an Arvind 

Instruction? 
Suppose a data structure keeps track of all the 
instructions in all the functional units 

The following checks need to be made before the 
Issue stage can dispatch an instruction 

• Is the required function unit available? 

• Is the input data available?   ⇒ RAW? 

• Is it safe to write the destination?  ⇒ WAR? WAW? 

• Is there a structural conflict at the WB stage? 

October 19, 2005 
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A Data Structure for Correct Issues 
Keeps track of the status of Functional Units 

Name Busy Op Dest Src1 Src2 
Int 
Mem 
Add1 
Add2 
Add3 
Mult1 
Mult2 
Div 

The instruction i at the Issue stage consults this table

FU available? check the busy column 
RAW? search the dest column for i’s sources 
WAR? search the source columns for i’s destination 
WAW? search the dest column for i’s destination 

An entry is added to the table if no hazard is detected; 
An entry is removed from the table after Write-Back 

October 19, 2005 
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Assuming In-order Issue 
Suppose the instruction is not dispatched by the 
Issue stage if a RAW hazard exists or the required 
FU is busy, and that operands are latched by 
functional unit on issue: 

Can the dispatched instruction cause a

WAR hazard ?


NO: Operands read at issue 

WAW hazard ? 
YES: Out-of-order completion 

October 19, 2005 
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Simplifying the Data Structure ...


No WAR hazard 
⇒ no need to keep src1 and src2 

The Issue stage does not dispatch an instruction in 
case of a WAW hazard 

⇒ a register name can occur at most once in the 
dest column 

WP[reg#] : a bit-vector to record the registers for 
which writes are pending 

These bits are set to true by the Issue stage and 
set to false by the WB stage 
⇒ Each pipeline stage in the FU's must carry the 

dest field and a flag to indicate if it is valid 
“the (we, ws) pair” 

October 19, 2005 
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Scoreboard for In-order Issues


Busy[FU#] : a bit-vector to indicate FU’s availability. 
(FU = Int, Add, Mult, Div) 

These bits are hardwired to FU's. 

WP[reg#] : a bit-vector to record the registers for which 
writes are pending. 

These bits are set to true by the Issue stage and set to 
false by the WB stage 

Issue checks the instruction (opcode dest src1 src2) 
against the scoreboard (Busy & WP) to dispatch 

FU available? Busy[FU#] 
RAW? WP[src1] or WP[src2] 
WAR? cannot arise 
WAW? WP[dest] 
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Functional Unit Status Registers Reserved 
Int(1) Add(1) Mult(3) Div(4) WB for Writes 

t0 I1 f6 f6 
t1 I2 f2 f6 f6, f2 
t2 f6 f2 f6, f2 I2 

t3 I3 f0 f6 f6, f0 
t4 f0 f6 f6, f0 I1 

t5 I4 f0 f8 f0, f8 
t6 f8 f0 f0, f8 I3 

t7 I5 f10 f8 f8, f10 
t8 f8 f10 f8, f10 I5 

t9 f8 f8 I4 

t10 I6 f6 f6 
t11 f6 f6 I6 

I1 DIVD f6, f6, f4 
I2 LD f2, 45(r3) 
I3 MULTD f0, f2, f4 
I4 DIVD f8, f6, f2 
I5 SUBD f10, f0, f6 
I6 ADDD f6, f8, f2 
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Thank you !



