

Complex Pipelining: Out-of-Order Execution & Register Renaming

Arvind

Computer Science and Artificial Intelligence Laboratory M.I.T.

Based on the material prepared by Krste Asanovic and Arvind

In-Order Issue Pipeline

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU's availability. (FU = Int, Add, Mult, Div) These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes are pending. These bits are set to true by the Issue stage and set to false by the WB stage

Issue checks the instruction (opcode dest src1 src2) against the scoreboard (Busy & WP) to dispatch

FU available? RAW? WAR? WAW?

Busy[FU#] WP[src1] or WP[src2] *cannot arise* WP[dest]

In-Order Issue Limitations: an example

1	LD		F2,	34(R2	2)	latency 1	1 2
2	LD		F4,	45(R3	3)	long	
3	MULTD		F6,	F4,	F2	3	4 3
4	SUBD		F8,	F2,	F2	1	
5	DIVD		F4,	F2,	F8	4	5
6	ADDD		F10,	F6,	F4	1	6
In-order: 1 (2, <u>1</u>) <u>2</u> 3 4 <u>4</u> <u>3</u> 5 <u>5</u> 6 <u>6</u> In-order restriction prevents instruction 4 from being dispatched							

Out-of-Order Issue

- Issue stage buffer holds multiple instructions waiting to issue.
- Decode adds next instruction to buffer if there is space and the instruction does not cause a WAR or WAW hazard.
- Any instruction in buffer whose RAW hazards are satisfied can be issued *(for now at most one dispatch per cycle)*. On a write back (WB), new instructions may get enabled.

In-Order Issue Limitations: an example

1	LD		F2,	34(R2	2)	latency 1	1 2
2	LD		F4,	45(R3	5)	long	
3	MULTD		F6,	F4,	F2	3	4 3
4	SUBD		F8,	F2,	F2	1	
5	DIVD		F4,	F2,	F8	4	5
6	ADDD		F10,	F6,	F4	1	6
	dor	1 ()	1)		224	4 2 E	E 4 4
In-order:						<u>4</u> <u>3</u> 5	
Out-of-order:		1 (2	, <u>1) 4 4</u> .	• • •	<u>∠</u> 3 .	. <u>3</u> 5	. <u>o</u> o <u>o</u>

Out-of-order execution did not allow any significant improvement!

6.823 L12-7 Arvind

How many Instructions can be in the pipeline

Which features of an ISA limit the number of instructions in the pipeline?

Number of Registers

Which features of a program limit the number of instructions in the pipeline?

Control transfers

Out-of-order dispatch by itself does not provide any significant performance improvement !

6.823 L12-8 Arvind

Overcoming the Lack of Register Names

Floating Point pipelines often cannot be kept filled with small number of registers.

IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution in 1967 based on on-the-fly *register renaming*

Instruction-Level Parallelism with *Renaming*

1	LD	F2,	34(R2	2)	latency 1	1 2
2	LD	F4,	45(R3	3)	long	
3	MULTD	F6,	F4,	F2	3	4 3
4	SUBD	F8,	F2,	F2	1	
5	DIVD	F4′,	F2,	F8	4	5
6	ADDD	F10,	F6,	F4′	1	6
						Ŭ

In-order:1 $(2,\underline{1})$... $\underline{2}$ 3 $\underline{4}$ $\underline{3}$ 5.. $\underline{5}$ 6Out-of-order:1 $(2,\underline{1})$ 4 $\underline{4}$ 5.. $\underline{2}$ $(3,\underline{5})$ $\underline{3}$ 6

Any antidependence can be eliminated by renaming. (renaming \Rightarrow additional storage) Can it be done in hardware?

6.823 L12-9

Arvind

Register Renaming

- Decode does register renaming and adds instructions to the issue stage reorder buffer (ROB)
 - ⇒ renaming makes WAR or WAW hazards impossible
- Any instruction in ROB whose RAW hazards have been satisfied can be dispatched.

 \Rightarrow Out-of-order or dataflow execution

6.823 L12-11 Arvind

Renaming & Out-of-order Issue

1	LD F2,	34(R	2)
2	LD F4,	45(R	3)
3	MULTD F6,	F4,	F2
4	SUBD F8,	F2,	F2
5	DIVD F4,	F2,	F8
6	ADDD F10	D, F6,	F4

- When are names in sources replaced by data? Whenever an FU produces data
- When can a name be reused? Whenever an instruction completes

Data-Driven Execution

- Instruction template (i.e., tag t) is allocated by the Decode stage, which also stores the tag in the reg file
- When an instruction completes, its tag is deallocated

Dataflow execution

Instruction slot is candidate for execution when:

- •It holds a valid instruction ("use" bit is set)
- It has not already started execution ("exec" bit is clear)
- •Both operands are available (p1 and p2 are set)

6.823 L12-14 Arvind

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly

- "exec" bit is set when instruction begins execution
- •When an instruction completes its "use" bit is marked free

• ptr₂ is incremented only if the "use" bit is marked free October 24, 2005

6.823 L12-15 Arvind

IBM 360/91 Floating Point Unit R. M. Tomasulo, 1967

6.823 L12-16 Arvind

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until mid-Nineties.

Why?

Reasons

- 1. Exceptions not precise!
- 2. Effective on a very small class of programs

One more problem needed to be solved

Control transfers

Five-minute break to stretch your legs

Precise Interrupts

It must appear as if an interrupt is taken between two instructions (say I_i and I_{i+1})

- the effect of all instructions up to and including I_i is totally complete
- no effect of any instruction after I_i has taken place

The interrupt handler either aborts the program or restarts it at \mathbf{I}_{i+1} .

Effect on Interrupts Out-of-order Completion

I_1	DIVD		f6,	f6,	f4
I_2	LD		f2,	45(r3)	
I_3	MULTD		fO,	f2,	f4
I_4	DIVD		f8,	f6,	f2
I_5	SUBD		f10,	fO,	f6
I_6	ADDD		f6,	f8,	f2
out-of-order comp	1 2	<u>2</u> 3	<u>1</u> 4	<u>3</u> 5 <u></u>	<u>5 4 6 6</u>
Consider interrupts			restore	e f2	restore f10

Precise interrupts are difficult to implement at high speed - want to start execution of later instructions before exception checks finished on earlier instructions

6.823 L12-20 Arvind

Commit

Exception Handling (In-Order Five-Stage Pipeline)

- Hold exception flags in pipeline until commit point (M stage)
- Exceptions in earlier pipe stages override later exceptions
- Inject external interrupts at commit point (override others)
- If exception at commit: update Cause and EPC registers, kill all stages, inject handler PC into fetch stage

Phases of Instruction Execution

In-Order Commit for Precise Exceptions

- Instructions fetched and decoded into instruction reorder buffer in-order
- Execution is out-of-order (\Rightarrow out-of-order completion)
- Commit (write-back to architectural state, i.e., regfile & memory, is in-order

Temporary storage needed to hold results before commit (shadow registers and store buffers)

Extensions for Precise Exceptions

Reorder buffer

- add <pd, dest, data, cause> fields in the instruction template
- commit instructions to reg file and memory in program order ⇒ buffers can be maintained circularly
- on exception, clear reorder buffer by resetting ptr₁=ptr₂ (stores must wait for commit before updating memory)

Rollback and Renaming

Register file does not contain renaming tags any more. How does the decode stage find the tag of a source register? Search the "dest" field in the reorder buffer

Renaming Table

Renaming table is a cache to speed up register name look up. It needs to be cleared after each exception taken. When else are valid bits cleared? *Control transfers*

6.823 L12-26 Arvind

Branch Penalty

6.823 L12-27 Arvind

Average Run-Length between Branches

Average dynamic instruction mix from SPEC92:

	SPECint92	SPECfp92
ALU	39 %	13 %
FPU Add		20 %
FPU Mult		13 %
load	26 %	23 %
store	9 %	9 %
branch	16 %	8 %
other	10 %	12 %

SPECint92: compress, eqntott, espresso, gcc , li SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average *run length* between branches

next lecture: Branch prediction & Speculative excecution

Thank you !