
Branch Prediction
and
Speculative Execution

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by
Krste Asanovic and Arvind

Outline

6.823 L13-2
Arvind

A

e Control transfer penalty

e Branch prediction schemes

e Branch misprediction recovery schemes

October 26, 2005

6.823 L13-3
Arvind

Phases of Instruction Execution

PC
Buffer
Buffer

Units
Result
Buffer
State

October 26, 2005

Fetch: Instruction bits retrieved
from cache.

Decode: Instructions placed in appropriate
Issue (aka “dispatch”) stage buffer

Execute: Instructions and operands sent to
execution units .

When execution completes, all results and
exception flags are available.

Commit: Instruction irrevocably updates
architectural state (aka “graduation” or
“completion”).

CSAIL

6.823 L13-4
Arvind

Fetch Stage

-

Instruction Cache

v
Hit?

Opcodel Rd | Rsrcl Rsrc2/Im

Instructions

l To Decode Stage

October 26, 2005 CSAIL

Decode & Rename Stage

6.823 L13-5
Arvind

(Renaming is shown only

for Rsrc2, similar for Rsrcl)

Opcode
R31
Committed R30 1ag
Architectural ! I . !
Regfile RO V] Tag

R31
R30 Rename

Table
RO

A

y

A

y

ALLJ/_ImmSeI

October 26, 2005

CSAIL

6.823 L13-6
Arvind

Execute Stage

e Arbiter selects one ready instruction (P1=1 AND P2=1) to
execute

e Instruction reads operands from ROB, executes, and
broadcasts tag and result to waiting instructions in ROB.
Also saves result and exception flags for commit.

\ 4 \ 4 \ 4

\ 4 \ 4

tn [Opcode|U|E|P1|Tagl|Datal|P2|Tag2|Data2|Pd| Rd |Datad|Cause

\\Eunc. Uni;/
L

October 26, 2005 @%

CSAIL

6.823 L13-7
Arvind

Commit Stage

e When instruction at ptr2 (commit point) has

completed, write back result to architectural state
and check for exceptions

e Check if rename table entry for architectural

register written matches tag, if so, clear valid bit In
rename table

tl
ptr2 —
tn
1
v Exception?
i R31 Rename
Committed R31 V] Tag
L, V] Ta R30
Architectural R3O! | | q. Table
Regfile RO VI Tag]RO

¥ v
__.i) .
October 26, 2005 ;;'Zlear rename Valldi%

"CSAIL

6.823 L13-8
Arvind

Branch Penalty

Next fetch
started

Buffer

Buffer
Func.
units

Modern processors may
have > 10 pipeline stages
between next PC calculation
and branch resolution !

Branch executed

October 26, 2005 CSAIL

6.823 L13-9

Average Run-Length between
Branches

Average dynamic instruction mix from SPEC92:
SPECiInt92 SPECfp92

ALU 39 % 13 %
FPU Add 20 %
FPU Mult 13 %
load 26 % 23 %
store 9 % 9 %
branch 16 % 8 %
other 10 % 12 %
SPECIint92: compress, egntott, espresso, gcc, li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches

October 26, 2005 =

6.823 L13-10
Arvind

Reducing Control Transfer Penalties

Software solution
e loop unrolling
Increases the run length
e instruction scheduling
Compute the branch condition as early
as possible (limited)

Hardware solution
e delay slots
replaces pipeline bubbles with useful work
(requires software cooperation)
e branch prediction & speculative execution
of instructions beyond the branch

i Yy I| [
October 26, 2005 CsAIL

6.823 L13-11

MIPS Branches and Jumps

Arvind

Need to know (or guess) both target address and
whether the branch/jump is taken or not

Instruction Taken known? Target known?
BEQZ/BNEZ After Reg. Fetch After Inst. Fetch
J Always Taken After Inst. Fetch

JR Always Taken After Reg. Fetch

October 26, 2005

.......

6.823 L13-12
Arvind

Branch Penalties in Modern Pipelines

UltraSPARC-I11 instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

October 26, 2005

le|=|W|TM|O|>

h—

« | T

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Outline

6.823 L13-13
Arvind

e Control transfer penalty

e Branch prediction schemes -

e Branch misprediction recovery schemes

October 26, 2005

6.823 L13-14
Arvind

Branch Prediction

Motivation: branch penalties limit performance of
deeply pipelined processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures: branch history tables, branch target
buffers, etc.

Mispredict recovery mechanisms:
e In-order machines: Kill instructions following
branch in pipeline
e Qut-of-order machines: shadow registers and
memory buffers for each speculated branch

October 26, 2005 =i

6.823 L13-15
Arvind

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:
|

backward ' forward

90% ; 50%

ISA can attach additional semantics to branches about
preferred direction, e.g., Motorola MC88110
bneO (preferred taken) begO (not taken)

ISA can allow arbitrary choice of statically predicted direction
(HP PA-RISC, Intel 1A-64)

October 26, 2005 = F

6.823 L13-16
Arvind

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

October 26, 2005 e

6.823 L13-17
Arvind

Branch Prediction Bits

e Assume 2 BP bits per instruction
e Change the prediction after two consecutive mistakes!

— taken

BP state:
(predict take/—take) x (last prediction right/wrong)

October 26, 2005 = Fo

Branch History Table

6.823 L13-18
Arvind

Fetch PC |O|O
g J
N I
¥k | | 2k-entry
I-Cache BHT Index - BHT
2 bits/entry
Instruction
Opcode offset
| v | |
Y/
,, : \
Branch? Target PC Taken/—Taken?

4K-entry BHT, 2 bits/entry, —80-90% correct predictions

October 26, 2005

6.823 L13-19
Arvind

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (—95% correct)

010

Fetch PC

.

2-bit global branch
history shift register

_.|

Shift in
Taken/—Taken
results of each
branch

October 26, 2005

-+

||

|
\

/

Taken/—Taken? ()

CSAIL

6.823 L13-20
Arvind

Exploiting Spatial Correlation
Yeh and Patt, 1992

It (X[1] < 7) then
y+: 1;

It (X[1] < 5) then
c —-= 4,

If first condition false, second condition also false

History bit: H records the direction of the last
branch executed by the processor

Two sets of BHT bits (BHTO & BHT1) per branch
Instruction

O (not taken) = consult BHTO
1 (taken) = consult BHT1

October 26, 2005

CCCCC

6.823 L13-21
Arvind

Limitations of BHTSs

Cannot redirect fetch stream until after branch instruction is
fetched and decoded, and target address determined

Correctly A| PC Generation/Mux
predicted Instruction Fetch Stage 1
taken branch Instruction Fetch Stage 2
penalty

P

F

B | Branch Address Calc/Begin Decode
| | Complete Decode
J

R

E

Jump Register
penalty

Steer Instructions to Functional units
Register File Read
Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-I11 fetch pipeline

TCSAIL

October 26, 2005

6.823 L13-22
Arvind

Branch Target Buffer

predicted ||BPbh
target
Branch
. : * | Target
IMEM . . * | Buffer
(2K entries)
Tk
PC
/\
target |BP

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
and update BTB & BPb else update BPb o

October 26, 2005 = Fo

6.823 L13-23
Arvind

Address Collisions

132 | Jump 100
Assume a
128-entry
BTB 1028 | Add
target BPb
- 236 take
' Instruction
What will be fetched after the instruction at 10287 Memory
BTB prediction = 236
Correct target — 1032

= kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

October 26, 2005

6.823 L13-24
Arvind

BTB should be for Control Transfer
Instructions only

BTB contains useful information for branch and
jump instructions only
= It should not be updated for other
Instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
Instruction?

October 26, 2005 = Fo

6.823 L13-25
Arvind

Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

(can also be associative)

Entry PC Valid predicted
target PC

I-Cache PC

match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

= Next PC determined before branch fetched and decoded o
October 26, 2005 kit

6.823 L13-26
Arvind

Consulting BTB Before Decoding

l 132 | Jump 100
entry PC target BPb
132 236 take 1028 | Add

e The match for PC=1028 fails and 1028+4 is fetched
= eliminates false predictions after
ALU instructions
e BTB contains entries only for control transfer
Instructions
= more room to store branch targets

October 26, 2005 =

6.823 L13-27
Arvind

Combining BTB and BHT

e BTB entries are considerably more expensive than BHT,
but can redirect fetches at earlier stage in pipeline and
can accelerate indirect branches (JR)

e BHT can hold many more entries and is more accurate

|

PC Generation/Mux

BTB Instruction Fetch Stage 1

A

F)

F | Instruction Fetch Stage 2

BHT in later BHT| | B| Branch Address Calc/Begin Decode

I

J

R

E

pipeline stage
corrects when
BTB misses a
predicted
taken branch

Complete Decode

Steer Instructions to Functional units
Register File Read

/ Integer Execute

BTB/BHT only updated after branch resolves in E stage FaoRy
October 26, 2005 ¥s’

6.823 L13-28
Arvind

Uses of Jump Register (JR)

e Switch statements (Jump to address of matching case)

BTB works well if same case used repeatedly
e Dynamic function call Jump to run-time function address)

BTB works well if same function usually called, (e.g., In
C++ programming, when objects have same type in
virtual function call)

e Subroutine returns (Jump to return address)
BTB works well if usually return to the same place

= Often one function called from many different call
sites!

How well does BTB work for each of these cases?

October 26, 2005 = Fo

6.823 L13-29
Arvind

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

fa() { T™OO:; }
O { fcO: }
fcO { fdQO; }
Pop return address

Push call address when)
. when subroutine
function call executed

return decoded

&td () k entries
&fc() (typically k=8-16)

&b

October 26, 2005 = Fe M

6.823 L13-30
Arvind

Outline

e Control transfer penalty

e Branch prediction schemes

e Branch misprediction recovery schemes

Five-minute break to stretch your legs

October 26, 2005 = Fo

6.823 L13-31
Arvind

Mispredict Recovery

In-order execution machines:

— Assume no Iinstruction issued after branch can
write-back before branch resolves

— Kill all instructions in pipeline behind
mispredicted branch

Out-of-order execution?

—Multiple instructions following branch in program
order can complete before branch resolves

October 26, 2005 =i

6.823 L13-32
Arvind

IN-Order Commit for Precise

Exceptions
In-order Out-of-order In-order
Fetch " Decode —| Reorder Buffer »] Commit
A
]
Kill ~
 Execute

Inject handler PC

e Instructions fetched and decoded into instruction
reorder buffer in-order

e Execution is out-of-order (= out-of-order completion)

e Commit (write-back to architectural state, i.e., regfile &
memory, IS in-order

Temporary storage needed in ROB to hold results before
commit

October 26, 2005 = P

6.823 L13-33
Arvind

Extensions for Precise Exceptions

pd dest data cause

otr U
next to U
commit L

Inst# use exec op pl srcl p2 src2

next D077
available T4

Reorder buffer

e add <pd, dest, data, cause> fields in the instruction template
e commit instructions to reg file and memory in program
order = buffers can be maintained circularly
= on exception, clear reorder buffer by resetting ptrq=ptr,
(stores must wait for commit before updating memory)

Tt

October 26, 2005 CSAIL

6.823 L13-34
Arvind

Branch Misprediction Recovery

srcl p2 src2 d dest data cause

Inst# use exec op pl

ptr,
next to
commit

rollback
availlable | 777777 8 k., oy v 2
ptr,
next
available

Reorder buffer

On mispredict
 Roll back “next available” pointer to just after branch

e Reset use bits
e Flush mis-speculated instructions from pipelines

e Restart fetch on correct branch path

October 26, 2005

6.823 L13-35
Arvind

Branch Misprediction in Pipeline

nject correct PC

Kill

pc|— Fetch "1 Decode | Reorder Buffer /j— Commit

l ‘ Complete

Execute

e Can have multiple unresolved branches in ROB
e Can resolve branches out-of-order by killing all the
Instructions in ROB that follow a mispredicted branch

October 26, 2005

6.823 L13-36

Arvind
Recovering Renaming Table
——7
Rename "=tV Rename Register —_—
Table f2 || Snapshots File
Ins# [use|exed op |pl srcl_p2] src2 Cdatany t,
N N t
Reorder N R 2
buffer R N} '
| N DN t,
Load Store Commit
unit| | 7° FU FU Unit
1 1 1 < t, result >

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

October 26, 2005 = P

6.823 L13-37
Arvind

Speculating Both Directions

An alternative to branch prediction Is to execute
both directions of a branch speculatively

e resource requirement is proportional to the
number of concurrent speculative executions

e only half the resources engage in useful work
when both directions of a branch are executed
speculatively

e pbranch prediction takes less resources
than speculative execution of both paths

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction .

October 26, 2005 = Fo

Thank you !

38

