
1

Advanced Superscalar

Microprocessors

Joel Emer
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Based on the material prepared by

Krste Asanovic and Arvind

Load
Unit

FU FU FU Store
Unit

Commit

ti
tj

0

:

t2

t1

0
1
1

6.823 L14- 2
Emer

O-o-O Execution with ROB

Rename
Rename
Table
Table

Next to
Next to
commit
commit

Next
Next
available
available
Reorder
Reorder
buffer
buffer

Register
File

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest data

R1
R2

tag
valid bit

t1
t2
.
.
tn

0 X X add X 1 X 2 X R4 4

8 X ld X 256 R3

R1 1
R2 2
R3 3

:

:

R3
R4

Register
File

Load
Unit

FU FU FU Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest dataIns# use exec op p1 src1 p2 src2 pd dest data

Commit

R1 ti
tj

0
R2

tag
valid bit

t1
t2
.
.
tn

0 X X add X 1 X 2 X R4 4

8 X ld X 256 R3

R1 1
R2 2
R3 3

:

: :

R3
R4

t2

t1

0
1
1

Basic Operation:
• Enter op and tag or data (if known) for each source
• Replace tag with data as it becomes available
• Issue instruction when all sources are available
• Save dest data when operation finishes
• Commit saved dest data when instruction commits

October 31, 2005

FU

6.823 L14- 3
Emer

Unified Physical Register File
(MIPS R10K, Alpha 21264, Pentium 4)

Rename
Table

r1 ti
r2 tj

FU Store
Unit

FULoad
Unit

FU

t1
t2
.
tn

Reg
File

Snapshots for
mispredict recovery

(ROB not shown) < t, result >

• One regfile for both committed and speculative values (no data in ROB)
• During decode, instruction result allocated new physical register, source

regs translated to physical regs through rename table
• Instruction reads data from regfile at start of execute (not in decode)
• Write-back updates reg. busy bits on instructions in ROB (assoc. search)
• Snapshots of rename table taken at every branch to recover mispredicts
• On exception, renaming undone in reverse order of issue (MIPS R10000)

October 31, 2005

6.823 L14- 4
Emer

Speculative & Out-of-Order Execution

October 31, 2005

Fetch Decode &
Rename Reorder BufferPC

Prediction

Update predictors

Commit

Resolution

Branch
Unit

ALU MEM Store
Buffer

D$

Execute

In-Order

In-OrderOut-of-Order

Physical Reg. File

kill

kill

kill

killBranch

Branch

6.823 L14- 5
Emer

Lifetime of Physical Registers
• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)

ld r1, (r3) ld P1, (Px)
add r3, r1, #4 add P2, P1, #4
sub r6, r7, r9 sub P3, Py, Pz

add r3, r3, r6 Rename add P4, P2, P3

ld r6, (r1)
 ld P5, (P1)

add r6, r6, r3 add P6, P5, P4

st r6, (r1) st P6, (P1)

ld r6, (r11) ld P7, (Pw)

When can we reuse a physical register?
When next write of same architectural register commits

October 31, 2005

6.823 L14- 6
Emer

Physical Register Management

Rename Physical Regs Free List

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

ROB

Table

p
p
p

P0
P1
P3
P2
P4

<R1>P8 p

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

use ex op p1 PR1 p2 PR2 Rd LPRd PRd (LPRd requires
third read port

on Rename
Table for each
instruction)

October 31, 2005

6.823 L14- 7
Emer

Physical Register Management

Rename Physical Regs Free List

Table P0
 P0

R0 P1 P1 ld r1, 0(r3)R1 P8 P0 P2 P3
R2 P3 P2 add r3, r1, #4R3 P7 P4 P4
R4 P5 <R6> p sub r6, r7, r6
R5 P6 <R7> p
R6 P5 P7 <R3> p add r3, r3, r6
R7 P6 P8 <R1> p ld r6, 0(r1)

Pn
ROB

use ex op p1 PR1 p2 PR2 Rd LPRd PRd
x ld p P7 r1 P8 P0

October 31, 2005

6.823 L14- 8
Emer

Physical Register Management

Rename Physical Regs Free List

Table P0
 P0

R0 P1 P1

P3 ld r1, 0(r3)R1 P8 P0 P2

R2 P3 P2 add r3, r1, #4R3 P7 P1 P4 P4
R4 P5 <R6> p sub r6, r7, r6
R5 P6 <R7> p
R6 P5 P7 <R3> p add r3, r3, r6
R7 P6 P8 <R1> p ld r6, 0(r1)

Pn
ROB

use ex op p1 PR1 p2 PR2 Rd LPRd PRd
x ld p P7 r1 P8 P0
x add P0 r3 P7 P1

October 31, 2005

6.823 L14- 9
Emer

Physical Register Management

Rename Physical Regs Free List

Table P0
 P0

R0 P1 P1

P3 ld r1, 0(r3)R1 P8 P0 P2

R2 P3 P2 add r3, r1, #4R3 P7 P1 P4 P4
R4 P5 <R6> p sub r6, r7, r6
R5 P6 <R7> p
R6 P5 P3 P7 <R3> p add r3, r3, r6
R7 P6 P8 <R1> p ld r6, 0(r1)

Pn
ROB

use ex op p1 PR1 p2 PR2 Rd LPRd PRd
x ld p P7 r1 P8 P0
x add P0 r3 P7 P1
x sub p P6 p P5 r6 P5 P3

October 31, 2005

6.823 L14- 10
Emer

Physical Register Management

Rename Physical Regs Free List

Table P0
 P0

R0 P1 P1

P3 ld r1, 0(r3)R1 P8 P0 P2

R2 P3
P4P2

P2 add r3, r1, #4R3 P7 P1 P4
R4 P5 <R6> p sub r6, r7, r6
R5 P6 <R7> p
R6 P5 P3 P7 <R3> p add r3, r3, r6
R7 P6 P8 <R1> p ld r6, 0(r1)

Pn
ROB

use ex op p1 PR1 p2 PR2 Rd LPRd PRd
x ld p P7 r1 P8 P0
x add P0 r3 P7 P1
x sub p P6 p P5 r6 P5 P3
x add P1 P3 r3 P1 P2

October 31, 2005

6.823 L14- 11
Emer

Physical Register Management

R0
R1
R2
R3
R4
R5
R6
R7

P5
P6

P8

P7

P0

P1

P3

P2

P4

Rename Physical Regs Free List
Table P0

P1
P3
P2
P4

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

p
p
p

<R1>P8 p

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

ROB
use ex op p1 PR1 p2 PR2 Rd LPRd PRd
x ld p P7 r1 P8 P0
x add P0 r3 P7 P1
x sub p P6 p P5 r6 P5 P3
x add P1 P3 r3 P1 P2
x ld P0 r6 P3 P4

October 31, 2005

6.823 L14- 12
Emer

Physical Register Management

Rename Physical Regs Free List

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

op p1 PR1 p2 PR2exuse Rd PRdLPRd

ROB

x ld p P7 r1 P0
x add P0 r3 P1
x sub p P6 p P5 r6 P3

x ld p P7 r1 P0

P0
P1
P3
P2
P4

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

p
p
p

<R1>P8 p

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4P3

P4

p

p

p<R1>

P8

x
Execute &
Commit

October 31, 2005

6.823 L14- 13
Emer

Physical Register Management

Rename Physical Regs Free List

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

op p1 PR1 p2 PR2exuse Rd PRdLPRd

ROB

x sub p P6 p P5 r6 P3
x add P0 r3 P1x add P0 r3 P1

P0
P1
P3
P2
P4

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

p
p
p

P8

x x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4P3

P4

p

p

p<R1>

P8

x

p

p<R3>

P7

Execute &
Commit

October 31, 2005

6.823 L14- 14

Reorder Buffer Holds Emer

Active Instruction Window

…
ld r1, (r3)
add r3, r1, r2
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3

ld r6, (r1)
…

…
ld r1, (r3)
add r3, r1, r2
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3

ld r6, (r1)

Commit

Fetch

Execute

st r6, (r1)

(Older instructions)

(Newer instructions)

st r6, (r1)

…
Cycle t + 1

Cycle t

October 31, 2005

6.823 L14- 15
Emer

Issue Timing

i1 Add R1,R1,#1 Issue1 Execute1

i2 Sub R1,R1,#1 Issue2 Execute2

How can we issue earlier?

i1 Add R1,R1,#1 Issue1 Execute1

i2 Sub R1,R1,#1 Issue2 Execute2

What makes this schedule fail?

October 31, 2005

6.823 L14- 16
Emer

Issue Queue with latency prediction

p1 lat1 src1 p2 lat2 src2 dest

ptr2
next to
commit

ptr1
next

available

Inst# use exec op

BEQZ

Speculative Instructions

Issue Queue (Reorder buffer)

• Fixed latency: latency included in queue entry (‘bypassed’)
• Predicted latency: latency included in queue entry (speculated)
• Variable latency: wait for completion signal (stall)

October 31, 2005

6.823 L14- 17
Emer

Data-in-ROB vs. Single Register File

Decode/ Read
Reg
File

Read
ROB

Source

FU

Cache

Write
ROB
Dest

Commit
Rename

Data-in-ROB style

Single-register-file style

Decode/ Issue
Queue

Read
Reg
File

FU

Cache

Write
Reg
File

Commit
Rename

How does issue speculation differ?

October 31, 2005

6.823 L14- 18
Emer

Superscalar Register Renaming
• During decode, instructions allocated new physical destination register
• Source operands renamed to physical register with newest value
• Execution unit only sees physical register numbers

Update
Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Mapping

Inst 1

Read Addresses

Read Data

W
ri
te

P
o
rt

s

Inst 2

Does this work?
October 31, 2005

6.823 L14- 19
Emer

Superscalar Register Renaming

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update

Inst 1 Inst 2

Read Addresses

Read Data

W
ri
te

P
o
rt

s

=?=?

Must check for

between
instructions
issuing in same
cycle. Can be

with rename
lookup.

Mapping

RAW hazards

done in parallel

MIPS R10K renames 4 serially-RAW-dependent insts/cycle)
October 31, 2005

20

Five-minute break to stretch your legs

6.823 L14- 21
Emer

Memory Dependencies

st r1, (r2)

ld r3, (r4)

When can we execute the load?

October 31, 2005

6.823 L14- 22
Emer

Speculative Loads / Stores

Just like register updates, stores should not modify
the memory until after the instruction is committed

->store buffer entry must carry a speculation bit and
the tag of the corresponding store instruction

• If the instruction is committed, the speculation bit of
the corresponding store buffer entry is cleared, and
store is written to cache

• If the instruction is killed, the corresponding store
buffer entry is freed

Loads work normally -- “older” store buffer entries
needs to be searched before accessing the memory
or the cache

October 31, 2005

6.823 L14- 23
Emer

Load Path

Data

Load Address

Tags

Store Commit Path

Speculative
Store Buffer

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

L1 Data Cache

•	 Hit in speculative store buffer has priority over hit in data cache
•	 Hit to newer store has priority over hits to older stores in

speculative store buffer

October 31, 2005

6.823 L14- 24
EmerDatapath: Branch Prediction

and Speculative Execution

October 31, 2005

Fetch Decode &
Rename Reorder BufferPC

Branch
Prediction

Update predictors

Commit

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill kill

6.823 L14- 25
Emer

In-Order Memory Queue

•	 Execute all loads and stores in program order

=> Load and store cannot leave ROB for
execution until all previous loads and stores
have completed execution

•	 Can still execute loads and stores
speculatively, and out-of-order with respect to
other instructions

•	 Stores held in store buffer until commit

October 31, 2005

6.823 L14- 26
Emer

Conservative O-o-O Load Execution

st r1, (r2)

ld r3, (r4)

•	 Split execution of store instruction into two phases:
address calculation and data write

•	 Can execute load before store, if addresses known and
r4 != r2

•	 Each load address compared with addresses of all
previous uncommitted stores (can use partial
conservative check i.e., bottom 12 bits of address)

•	 Don’t execute load if any previous store address not
known

(MIPS R10K, 16 entry address queue)

October 31, 2005

6.823 L14- 27
Emer

Address Speculation

st r1, (r2)

ld r3, (r4)

•	 Guess that r4 != r2

•	 Execute load before store address known

•	 Need to hold all completed but uncommitted load/store
addresses in program order

•	 If subsequently find r4==r2, squash load and all following
instructions

=> Large penalty for inaccurate address speculation

October 31, 2005

6.823 L14- 28
Emer

Memory Dependence Prediction

(Alpha 21264)

st r1, (r2)

ld r3, (r4)

•	 Guess that r4 != r2 and execute load before store

•	 If later find r4==r2, squash load and all following
instructions, but mark load instruction as store-wait

•	 Subsequent executions of the same load instruction
will wait for all previous stores to complete

•	 Periodically clear store-wait bits

October 31, 2005

6.823 L14- 29

Store Sets Emer

(Alpha 21464)

Program
Order

PC 8

PC 0
PC 12

PC 8

0

PC

4

8
12

Load28
Load32

Load36
Load40

{Empty}

Multiple Readers

Store

Store

Store
Store

Multiple Writers
- multiple code paths
- multiple stack spills
- multiple components

of a single location

October 31, 2005

6.823 L14- 30

Memory Dependence Prediction
Emer

using Store Sets

•The processor approximates each load’s
store set by initially allowing naïve

speculation and recording memory-order

violations.

• A load must wait for any stores in its

store set that have not yet executed.

October 31, 2005

6.823 L14- 31
Emer

The Store Set Map Table

Index

Index
V

V

Program
Order

Store
Set A

Writer

Reader

Load

Index

Index

Load

IndexLoad

.

.

.

.

.

.

.

.

.

.

.

.

Store Set Map Table

Store

Store

- Store/Load Pair causing Memory Order Violation

October 31, 2005

6.823 L14- 32
Emer

Store Set Sharing for Multiple Readers

Index

Index
V

V

Program
Order

Store
Set A

Load

Index

Index

Load

IndexLoad

.

.

.

.

.

.

.

.

.

.

.

.

V

Store Set Map Table

Store

Store

- Store/Load Pair causing Memory Order Violation

October 31, 2005

6.823 L14- 33
Emer

Store Set Map Table, cont.

Index

Index
V

V

Program
Order

Store
Set A

Load

Index

Index

Load

IndexLoad

.

.

.

.

.

.

.

.

.

.

.

.

V

V

V

Store
Set B

Store Set Map Table

Store

Store

- Store/Load Pair causing Memory Order Violation

October 31, 2005

34

Thank you !

35

Extras

6.823 L14- 36
Emer

Mispredict Recovery
•	 In-order execution machines:

–	 Assume no instruction issued after branch can

write-back before branch resolves

–	 Kill all instructions in pipeline behind mispredicted
branch

Out-of-order execution?

–Multiple instructions following branch in program

order can complete before branch resolves

October 31, 2005

6.823 L14- 37
Emer

Precise Exceptions via In-Order Commit

In-order Out-of-order In-order

Fetch Decode

Execute

CommitReorder Buffer

Kill
Kill Kill

Exception?Inject handler PC

• Instructions fetched and decoded into instruction
reorder buffer in-order

• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
memory, is in-order

October 31, 2005

Temporary storage needed in ROB to hold results before commit

6.823 L14- 38
Emer

Extensions for Precise Exceptions
Inst# use exec op p1 src1 p2 src2 pd dest data cause

ptr2

next to

commit

ptr1
next

available

Reorder buffer

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
order ⇒ buffers can be maintained circularly

• on exception, clear reorder buffer by resetting ptr1=ptr2
(stores must wait for commit before updating memory)

October 31, 2005

6.823 L14- 39
Emer

Branch Misprediction Recovery
pd dest data cause

ptr2
next to
commit
rollback

next
available

ptr1
next

available

Inst# use exec op p1

BEQZ

Speculative Instructions

src1 p2 src2

Reorder buffer

On mispredict
• Roll back “next available” pointer to just after branch
• Reset use bits
• Flush mis-speculated instructions from pipelines
• Restart fetch on correct branch path

October 31, 2005

6.823 L14- 40
Emer

Branch Misprediction in Pipeline

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

Branch
Prediction

PC

Complete

• Can have multiple unresolved branches in ROB
• Can resolve branches out-of-order by killing all the

instructions in ROB that follow a mispredicted branch

October 31, 2005

ttt

6.823 L14- 41
Emer

Recovering Renaming Table

Reorder
buffer

Load
Unit

FU FU FU Store
Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

vvv Register
FileTable

r1 t v
r2 Snapshots

Rename Rename

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

October 31, 2005

