
1

Symmetric Multiprocessors:
Synchronization

and
Sequential Consistency

Arvind

Computer Science and Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L16- 2
Arvind

Symmetric Multiprocessors

symmetric

away from all processors

(set up a DMA transfer)

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller

I/O bus

Networks

Processor

November 7, 2005

• All memory is equally far

• Any processor can do any I/O

I/O controller

6.823 L16- 3
Arvind

Synchronization

The need for synchronization arises whenever
there are parallel processes in a system

(even in a uniprocessor system)

Forks and Joins: In parallel programming
a parallel process may want to wait until
several events have occurred

Producer-Consumer: A consumer process
must wait until the producer process has
produced data

Exclusive use of a resource: Operating
system has to ensure that only one
process uses a resource at a given time

producer

consumer

fork

join

P1 P2

November 7, 2005

6.823 L16- 4
Arvind

A Producer-Consumer Example

Producer Consumer
tail head

R Rtail Rhead R
tail

Producer posting Item x: Consumer:

Load(Rtail, tail) Load(Rhead, head)

R
Store(Rtail, x) spin: Load(Rtail, tail)

tail=Rtail+1 if Rhead==Rtail goto spin

R
Store(tail, Rtail)

Load(R, Rhead)
head=Rhead+1

Store(head, Rhead)
process(R)

The program is written assuming

instructions are executed in order. Problems?

November 7, 2005

6.823 L16- 5
Arvind

A Producer-Consumer Example

continued

R

Producer posting Item x: Consumer:
Load(Rtail, tail) Load(Rhead, head)

1 Store(Rtail, x) spin: Load(Rtail, tail) 3

tail=Rtail+1 if Rhead==Rtail goto spin
2 Store(tail, Rtail) Load(R, Rhead) 4

Rhead=Rhead+1

Can the tail pointer get updated Store(head, Rhead)

before the item x is stored? process(R)

Programmer assumes that if 3 happens after 2, then 4

happens after 1.

Problem sequences are:
2, 3, 4, 1

4, 1, 2, 3

November 7, 2005

6.823 L16- 6
Arvind

Sequential Consistency

A Memory Model

M

P P P P P P

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

November 7, 2005

6.823 L16- 7
Arvind

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store(X, 1) (X = 1) Load(R1, Y)
Store(Y, 11) (Y = 11) Store(Y’, R1) (Y’= Y)

Load(R2, X)
Store(X’, R2) (X’= X)

what are the legitimate answers for X’ and Y’ ?

(X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ?

If y is 11 then x cannot be 0

November 7, 2005

6.823 L16- 8
Arvind

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

What are these in our example ?

T1: T2:
Store(X, 1) (X = 1) Load(R1, Y)

Store(Y, 11) (Y = 11)
 Store(Y’, R1) (Y’= Y)

Load(R2, X)

Store(X’, R2) (X’= X)
additional SC requirements

Does (can) a system with caches or out-of-order
execution capability provide a sequentially consistent
view of the memory ?

more on this later

November 7, 2005

6.823 L16- 9
Arvind

Multiple Consumer Example

Producer posting Item x:
Load(Rtail, tail)
Store(Rtail, x)
Rtail=Rtail+1
Store(tail, Rtail)

Consumer:
Load(Rhead, head)

spin: tail, tail)
if Rhead==Rtail goto spin
Load(R, Rhead)
Rhead=Rhead+1
Store(head, Rhead)
process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically
by one consumer ⇒ locks

tail head
Producer

R

Consumer
1

RRhead

Rtail

Consumer
2

RRhead

Rtail

November 7, 2005

Load(R

tail

6.823 L16- 10
Arvind

Locks or Semaphores

E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the

following operations:

P(s): if s>0 decrement s by 1 otherwise wait

V(s): increment s by 1 and wake up one of
the waiting processes

P’s and V’s must be executed atomically, i.e., without
• interruptions or
• interleaved accesses to s by other processors

Process i initial value of s determines
P(s) the maximum no. of processes

<critical section> in the critical section
V(s)

November 7, 2005

6.823 L16- 11
Arvind

Implementation of Semaphores

Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
atomic read-modify-write instructions

Examples: m is a memory location, R is a register

Test&Set(m, R): Fetch&Add(m, RV, R): Swap(m,R):
R ← M[m]; R ← M[m]; Rt ← M[m];
if R==0 then M[m] ← R + RV; M[m] ← R;

M[m] ← 1; R ← Rt;

November 7, 2005

6.823 L16- 12
Arvind

Multiple Consumers Example

using the Test&Set Instruction

Critical
Section

P: Test&Set(mutex,R)
if (Rtemp!=0) goto P
Load(Rhead, head)

spin: tail, tail)
if Rhead==Rtail
Load(R, Rhead)
Rhead=Rhead+1
Store(head, Rhead)

temp

Load(R
goto spin

V: 	Store(mutex,0)

process(R)

Other atomic read-modify-write instructions (Swap,
Fetch&Add, etc.) can also implement P’s and V’s

What if the process stops or is swapped out while
in the critical section?

November 7, 2005

6.823 L16- 13
Arvind

Nonblocking Synchronization

Compare&Swap(m,Rt,Rs):

if (Rt==M[m])
 status is an

then M[m]=Rs; implicit
Rs=Rt ; argument
status ← success;

else	 status ← fail;

try: 	 Load(Rhead, head)
spin:	 Load(Rtail, tail)

if Rhead==Rtail goto spin
Load(R, Rhead)
Rnewhead = Rhead+1
Compare&Swap(head, Rhead, Rnewhead)
if (status==fail) goto try
process(R)

November 7, 2005

6.823 L16- 14
Arvind

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

Load-reserve(R, m): Store-conditional(m, R):
<flag, adr> ← <1, m>; if <flag, adr> == <1, m>
R ← M[m]; then cancel other procs’

reservation on m;
M[m] ← R;
status ← succeed;

else status ← fail;

try: Load-reserve(Rhead, head)
spin: Load (Rtail, tail)

if Rhead==Rtail goto spin
Load(R, Rhead)
Rhead = Rhead + 1
Store-conditional(head, Rhead)
if (status==fail) goto try

November 7, 2005

process(R)

6.823 L16- 15
Arvind

Performance of Locks
Blocking atomic read-modify-write instructions

e.g., Test&Set, Fetch&Add, Swap
vs

Non-blocking atomic read-modify-write instructions
e.g., Compare&Swap,

Load-reserve/Store-conditional
vs

Protocols based on ordinary Loads and Stores

Performance depends on several interacting factors:
degree of contention,
caches,
out-of-order execution of Loads and Stores

later ...

November 7, 2005

6.823 L16- 16

Issues in Implementing
Arvind

Sequential Consistency

M

P P P P P P

Implementation of SC is complicated by two issues

• Our-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a ≠ b
Store(a); Load(b) yes if a ≠ b
Store(a); Store(b) yes if a ≠ b

• Caches
Caches can prevent the effect of a store from
being seen by other processors

November 7, 2005

6.823 L16- 17
Arvind

Memory Fences
Instructions to sequentialize memory accesses

Processors with relaxed or weak memory models, i.e.,
permit Loads and Stores to different addresses to be
reordered need to provide memory fence instructions
to force the serialization of memory accesses

Examples of processors with relaxed memory models:
Sparc V8 (TSO,PSO): Membar
Sparc V9 (RMO):

Membar #LoadLoad, Membar #LoadStore
Membar #StoreLoad, Membar #StoreStore

PowerPC (WO): Sync, EIEIO

Memory fences are expensive operations, however, one
pays the cost of serialization only when it is required

November 7, 2005

6.823 L16- 18
Arvind

Using Memory Fences

Producer Consumer
tail head

R Rtail Rhead R
tail

Producer posting Item x: Consumer:

Load(Rtail, tail) Load(Rhead, head)

Store(Rtail, x) spin: Load(Rtail, tail)

MembarSS MemberLL

if Rhead==Rtail goto spin

R

Rtail=Rtail+1

Store(tail, Rtail)

Load(R, Rhead)

head=Rhead+1

ensures that tail ptr ensures that R is Store(head, Rhead)

is not updated before not loaded before process(R)

x has been stored
 x has been stored

November 7, 2005

6.823 L16- 19

Data-Race Free Programs
Arvind

a.k.a. Properly Synchronized Programs

Process 1 Process 2
... ...
Acquire(mutex); Acquire(mutex);
< critical section> < critical section>

Release(mutex); Release(mutex);

Synchronization variables (e.g. mutex) are disjoint
from data variables

Accesses to writable shared data variables are
protected in critical regions

⇒ no data races except for locks
(Formal definition is elusive)

In general, it cannot be proven if a program is data-race
free.

November 7, 2005

6.823 L16- 20

Fences in Data-Race Free
Arvind

Programs

Process 1 Process 2
... ...
Acquire(mutex); Acquire(mutex);
membar; membar;

< critical section> < critical section>
membar; membar;
Release(mutex); Release(mutex);

• Relaxed memory model allows reordering of instructions
by the compiler or the processor as long as the reordering
is not done across a fence

• The processor also should not speculate or prefetch
across fences

November 7, 2005

21

Five-minute break to stretch your legs

6.823 L16- 22
Arvind

Mutual Exclusion Using Load/Store

A protocol based on two shared variables c1 and c2.

Initially, both c1 and c2 are 0 (not busy)

Process 1	 Process 2
... ...

c1=1; c2=1;

L: if c2=1 then go to L
< critical section>

c1=0;

L: 	 if c1=1 then go to L
< critical section>

c2=0;

What is wrong?	 Deadlock!

November 7, 2005

6.823 L16- 23
Arvind

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

Process 1 Process 2
... ...

L: c1=1; L: c2=1;
if c2=1 then if c1=1 then

{ c1=0; go to L} { c2=0; go to L}
< critical section> < critical section>

c1=0 c2=0

• Deadlock is not possible but with a low probability
a livelock may occur.

• An unlucky process may never get to enter the
critical section ⇒ starvation

November 7, 2005

6.823 L16- 24
Arvind

A Protocol for Mutual Exclusion

T. Dekker, 1966

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

Process 1 Process 2
... ...
c1=1; c2=1;
turn = 1; turn = 2;

L: if c2=1 & turn=1 L: if c1=1 & turn=2
then go to L then go to L

< critical section> < critical section>
c1=0; c2=0;

• turn = i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion

Solution for n processes was given by Dijkstra
and is quite tricky!

November 7, 2005

6.823 L16- 25
Arvind

Analysis of Dekker’s Algorithm

S
ce

n
ar

io
 2

S
ce

n
ar

io
 1

... Process 1
c1=1;

turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

... Process 1
c1=1;

turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

... Process 2
c2=1;

turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

November 7, 2005

6.823 L16- 26
Arvind

N-process Mutual Exclusion
Lamport’s Bakery Algorithm

Process i Initially num[j] = 0, for all j
Entry Code

choosing[i] = 1;

num[i] = max(num[0], …, num[N-1]) + 1;

choosing[i] = 0;

for(j = 0; j < N; j++) {

while(choosing[j]);

while(num[j] &&

((num[j] < num[i]) ||
(num[j] == num[i] && j < i)));

}

Exit Code
num[i] = 0;

November 7, 2005

6.823 L16- 27
Arvind

next time

Effect of caches on
Sequential Consistency

November 7, 2005

28

Thank you !

