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Symmetric Multiprocessors
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• All memory is equally far 

• Any processor can do any I/O 

I/O controller 
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Synchronization


The need for synchronization arises whenever 
there are parallel processes in a system 

(even in a uniprocessor system) 

Forks and Joins: In parallel programming 
a parallel process may want to wait until 
several events have occurred 

Producer-Consumer: A consumer process 
must wait until the producer process has 
produced data 

Exclusive use of a resource: Operating 
system has to ensure that only one 
process uses a resource at a given time 

producer 

consumer 

fork 

join 

P1 P2 
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A Producer-Consumer Example


Producer Consumer 
tail head 

R Rtail Rhead R
tail 

Producer posting Item x: Consumer:


Load(Rtail, tail) Load(Rhead, head)


R
Store(Rtail, x) spin: Load(Rtail, tail) 

tail=Rtail+1 if Rhead==Rtail goto spin 

R
Store(tail, Rtail) 

Load(R, Rhead) 
head=Rhead+1 

Store(head, Rhead) 
process(R)

The program is written assuming 

instructions are executed in order. Problems?


November 7, 2005 
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A Producer-Consumer Example

continued 

R

Producer posting Item x: Consumer: 
Load(Rtail, tail) Load(Rhead, head) 

1 Store(Rtail, x) spin: Load(Rtail, tail) 3 

tail=Rtail+1 if Rhead==Rtail goto spin 
2 Store(tail, Rtail) Load(R, Rhead) 4 

Rhead=Rhead+1


Can the tail pointer get updated Store(head, Rhead)


before the item x is stored? process(R)


Programmer assumes that if 3 happens after 2, then 4

happens after 1.


Problem sequences are: 
2, 3, 4, 1

4, 1, 2, 3


November 7, 2005 
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Sequential Consistency

A Memory Model 

M 

P P P P P P 

“ A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential 
order, and the operations of each individual processor 
appear in the order specified by the program” 

Leslie Lamport 

Sequential Consistency = 
arbitrary order-preserving interleaving 
of memory references of sequential programs 

November 7, 2005 
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Sequential Consistency


Sequential concurrent tasks: T1, T2 
Shared variables: X, Y (initially X = 0, Y = 10) 

T1: T2: 
Store(X, 1) (X = 1) Load(R1, Y) 
Store(Y, 11) (Y = 11) Store(Y’, R1) (Y’= Y) 

Load(R2, X) 
Store(X’, R2) (X’= X) 

what are the legitimate answers for X’ and Y’ ? 

(X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ? 

If y is 11 then x cannot be 0 

November 7, 2005 
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Sequential Consistency


Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies ( ) 

What are these in our example ? 

T1: T2: 
Store(X, 1) (X = 1) Load(R1, Y) 

Store(Y, 11) (Y = 11)
 Store(Y’, R1) (Y’= Y)


Load(R2, X) 

Store(X’, R2) (X’= X)
additional SC requirements 

Does (can) a system with caches or out-of-order 
execution capability provide a sequentially consistent 
view of the memory ? 

more on this later 

November 7, 2005 
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Multiple Consumer Example


Producer posting Item x: 
Load(Rtail, tail) 
Store(Rtail, x) 
Rtail=Rtail+1 
Store(tail, Rtail) 

Consumer: 
Load(Rhead, head) 

spin: tail, tail) 
if Rhead==Rtail goto spin 
Load(R, Rhead) 
Rhead=Rhead+1 
Store(head, Rhead) 
process(R) 

What is wrong with this code? 

Critical section: 
Needs to be executed atomically 
by one consumer ⇒ locks 

tail head 
Producer 

R

Consumer 
1 

RRhead 

Rtail 

Consumer 
2 

RRhead 

Rtail 
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Locks or Semaphores

E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the

following operations:


P(s): if s>0 decrement s by 1 otherwise wait 

V(s): increment s by 1 and wake up one of 
the waiting processes 

P’s and V’s must be executed atomically, i.e., without 
• interruptions or 
• interleaved accesses to s by other processors 

Process i initial value of s determines
P(s) the maximum no. of processes

<critical section> in the critical section
V(s) 

November 7, 2005 
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Implementation of Semaphores


Semaphores (mutual exclusion) can be implemented 
using ordinary Load and Store instructions in the 
Sequential Consistency memory model. However, 
protocols for mutual exclusion are difficult to design... 

Simpler solution: 
atomic read-modify-write instructions 

Examples: m is a memory location, R is a register 

Test&Set(m, R): Fetch&Add(m, RV, R): Swap(m,R): 
R ← M[m]; R ← M[m]; Rt ← M[m]; 
if R==0 then M[m] ← R + RV; M[m] ← R; 

M[m] ← 1; R ← Rt; 

November 7, 2005 
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Multiple Consumers Example

using the Test&Set Instruction 

Critical 
Section 

P: Test&Set(mutex,R ) 
if (Rtemp!=0) goto P 
Load(Rhead, head) 

spin: tail, tail) 
if Rhead==Rtail 
Load(R, Rhead) 
Rhead=Rhead+1 
Store(head, Rhead) 

temp

Load(R
goto spin 

V: 	Store(mutex,0)

process(R)


Other atomic read-modify-write instructions (Swap, 
Fetch&Add, etc.) can also implement P’s and V’s 

What if the process stops or is swapped out while 
in the critical section? 

November 7, 2005 
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Nonblocking Synchronization


Compare&Swap(m,Rt,Rs):

if (Rt==M[m])
 status is an 

then M[m]=Rs; implicit
Rs=Rt ; argument 
status ← success; 

else	 status ← fail; 

try: 	 Load(Rhead, head) 
spin:	 Load(Rtail, tail) 

if Rhead==Rtail goto spin 
Load(R, Rhead) 
Rnewhead = Rhead+1 
Compare&Swap(head, Rhead, Rnewhead) 
if (status==fail) goto try 
process(R) 

November 7, 2005 
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Load-reserve & Store-conditional


Special register(s) to hold reservation flag and address, 
and the outcome of store-conditional 

Load-reserve(R, m): Store-conditional(m, R): 
<flag, adr> ← <1, m>; if <flag, adr> == <1, m> 
R ← M[m]; then cancel other procs’ 

reservation on m; 
M[m] ← R; 
status ← succeed; 

else status ← fail; 

try: Load-reserve(Rhead, head) 
spin: Load (Rtail, tail) 

if Rhead==Rtail goto spin 
Load(R, Rhead) 
Rhead = Rhead + 1 
Store-conditional(head, Rhead) 
if (status==fail) goto try 

November 7, 2005 

process(R)
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Performance of Locks 
Blocking atomic read-modify-write instructions 

e.g., Test&Set, Fetch&Add, Swap 
vs 

Non-blocking atomic read-modify-write instructions 
e.g., Compare&Swap, 

Load-reserve/Store-conditional 
vs 

Protocols based on ordinary Loads and Stores 

Performance depends on several interacting factors: 
degree of contention, 
caches, 
out-of-order execution of Loads and Stores 

later ... 

November 7, 2005 
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Issues in Implementing 
Arvind 

Sequential Consistency 

M 

P P P P P P 

Implementation of SC is complicated by two issues 

• Our-of-order execution capability 
Load(a); Load(b) yes 
Load(a); Store(b) yes if a ≠ b 
Store(a); Load(b) yes if a ≠ b 
Store(a); Store(b) yes if a ≠ b 

• Caches 
Caches can prevent the effect of a store from 
being seen by other processors 

November 7, 2005 
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Memory Fences
Instructions to sequentialize memory accesses


Processors with relaxed or weak memory models, i.e., 
permit Loads and Stores to different addresses to be 
reordered need to provide memory fence instructions 
to force the serialization of memory accesses 

Examples of processors with relaxed memory models: 
Sparc V8 (TSO,PSO): Membar 
Sparc V9 (RMO): 

Membar #LoadLoad, Membar #LoadStore 
Membar #StoreLoad, Membar #StoreStore 

PowerPC (WO): Sync, EIEIO 

Memory fences are expensive operations, however, one 
pays the cost of serialization only when it is required 

November 7, 2005 
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Using Memory Fences


Producer Consumer 
tail head 

R Rtail Rhead R
tail 

Producer posting Item x: Consumer:


Load(Rtail, tail) Load(Rhead, head)


Store(Rtail, x) spin: Load(Rtail, tail) 

MembarSS MemberLL

if Rhead==Rtail goto spin 

R

Rtail=Rtail+1

Store(tail, Rtail) 

Load(R, Rhead)


head=Rhead+1

ensures that tail ptr ensures that R is Store(head, Rhead)

is not updated before not loaded before process(R)

x has been stored
 x has been stored 

November 7, 2005 
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Data-Race Free Programs 
Arvind 

a.k.a. Properly Synchronized Programs 

Process 1 Process 2 
... ... 
Acquire(mutex); Acquire(mutex); 
< critical section> < critical section> 

Release(mutex); Release(mutex); 

Synchronization variables (e.g. mutex) are disjoint 
from data variables 

Accesses to writable shared data variables are 
protected in critical regions 

⇒ no data races except for locks 
(Formal definition is elusive) 

In general, it cannot be proven if a program is data-race 
free. 

November 7, 2005 
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Fences in Data-Race Free 
Arvind 

Programs 

Process 1 Process 2 
... ... 
Acquire(mutex); Acquire(mutex); 
membar; membar; 

< critical section> < critical section> 
membar; membar; 
Release(mutex); Release(mutex); 

• Relaxed memory model allows reordering of instructions 
by the compiler or the processor as long as the reordering 
is not done across a fence 

• The processor also should not speculate or prefetch 
across fences 

November 7, 2005 
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Mutual Exclusion Using Load/Store 


A protocol based on two shared variables c1 and c2. 

Initially, both c1 and c2 are 0 (not busy)


Process 1	 Process 2 
... ...

c1=1; c2=1;


L: if c2=1 then go to L 
< critical section>


c1=0;


L: 	 if c1=1 then go to L 
< critical section> 

c2=0; 

What is wrong?	 Deadlock! 

November 7, 2005 
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Mutual Exclusion: second attempt 

To avoid deadlock, let a process give up the reservation 
(i.e. Process 1 sets c1 to 0) while waiting.

Process 1 Process 2 
... ... 

L: c1=1; L: c2=1; 
if c2=1 then if c1=1 then 

{ c1=0; go to L} { c2=0; go to L} 
< critical section> < critical section> 

c1=0 c2=0 

• Deadlock is not possible but with a low probability 
a livelock may occur. 

• An unlucky process may never get to enter the 
critical section ⇒ starvation 

November 7, 2005 
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A Protocol for Mutual Exclusion

T. Dekker, 1966

A protocol based on 3 shared variables c1, c2 and turn. 
Initially, both c1 and c2 are 0 (not busy) 

Process 1 Process 2 
... ... 
c1=1; c2=1; 
turn = 1; turn = 2; 

L: if c2=1 & turn=1 L: if c1=1 & turn=2 
then go to L then go to L 

< critical section> < critical section> 
c1=0; c2=0; 

• turn = i ensures that only process i can wait 
• variables c1 and c2 ensure mutual exclusion 

Solution for n processes was given by Dijkstra 
and is quite tricky! 

November 7, 2005 
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Analysis of Dekker’s Algorithm
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... Process 1 
c1=1;

turn = 1;


L: if c2=1 & turn=1 
then go to L 

< critical section> 
c1=0; 

... Process 1 
c1=1;

turn = 1;


L: if c2=1 & turn=1 
then go to L 

< critical section> 
c1=0; 

... Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2 
then go to L 

< critical section> 
c2=0; 

... Process 2 
c2=1;

turn = 2;


L: if c1=1 & turn=2 
then go to L 

< critical section> 
c2=0; 

November 7, 2005 
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N-process Mutual Exclusion
Lamport’s Bakery Algorithm 

Process i Initially num[j] = 0, for all j 
Entry Code 

choosing[i] = 1;

num[i] = max(num[0], …, num[N-1]) + 1;

choosing[i] = 0;


for(j = 0; j < N; j++) {

while( choosing[j] );

while( num[j] &&


( ( num[j] < num[i] ) || 
( num[j] == num[i] && j < i ) ) ); 

} 

Exit Code 
num[i] = 0; 

November 7, 2005 
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next time


Effect of caches on 
Sequential Consistency 
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Thank you !



