
Sequential Consistency
and
Cache Coherence Protocols

Arvind
Computer Science and Artificial Intelligence Lab
M.I.T.

Based on the material prepared by
Arvind and Krste Asanovic

6.823 L17- 2
Arvind

Memory Consistency in SMPs

CPU-1 CPU-2
| |
A 100 cache-1 A 100 cache-2

CPU-Memory bus
|

A 100 memory

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming__’g?_u

November 9, 2005 e

6.823 L17- 3
Arvind

Write-back Caches & SC

prog T1 cache-1 memory cache-2 prog T2

ST X, 1 X=1 X = = LD Y, R1
: STY,11 Y=11 Y =10 = STY’, R1
e T1 is executed o " — D X R
= X'= ST X’,R2
e cache-1 writes back Y| vy=11 Y =11 Y=
X'= X =
Y'= T—
X=1 X=0 Y =11
- T2 executed Lt I M B Mt
Y= X'=0
X=1 X=1 Y =11
e cache-1 writes back X | Y=11 Y =11 Y'=11 X
X'= X=0 @(\
Y'= X'=0 6(
\(\
_ X= 1 X=1 Y=11] O
e cache-2 writes back y=11 Y =11 y=11| 4&
]] X’: O X e 0
X &Y y'=11 X'= 0 ks

November 9, 2005 = Fo

6.823 L17- 4
Arvind

Write-through Caches & SC

prog T1 cache-1 memory cache-2 prog T2
ST X, 1 X=0 X = = ;ETD :((F;{l1
STVY,11 Y=10 Y =10 = :
’ X’'= X = 0 LD X, R2
Y’ '= X'= ST X’,R2
e T1 executed o X~ o
Y'= X'=
X=1 X=1 Y =11
e T2 executed SRV I O I IVSee
Y’:A X'=0

Write-through caches don’t preserve
sequential consistency either

J| ~1
November 9, 2005 Lby

6.823 L17-5
Arvind

Maintaining Sequential Consistency

SC is sufficient for correct producer-consumer
and mutual exclusion code (e.g., Dekker)

Multiple copies of a location in various caches
can cause SC to break down.

Hardware support is required such that
e only one processor at a time has write
permission for a location
e NO processor can load a stale copy of
the location after a write

— cache coherence protocols

November 9, 2005

.......

6.823 L17- 6
Arvind

A System with Multiple Caches

November 9, 2005

| pllPIlP|lP]

TN | N | N |

P

_P |
1 L2
I I I
Interconnect

M

—
=

Modern systems often have hierarchical caches

Each cache has exactly one parent but can have zero
or more children

Only a parent and its children can communicate
directly

Inclusion property is maintained between a parent
and its children, i.e.,

a e L = aeli,

6.823 L17-7
Arvind

Cache Coherence Protocols for SC

write request:
the address is invalidated (updated) in all other
caches before (after) the write is performed

read request:

If a dirty copy is found in some cache, a write-
back is performed before the memory is read

We will focus on Invalidation protocols
as opposed to Update protocols

November 9, 2005 = Fe M

Warmup: Parallel 1/0

6.823 L17- 8
Arvind

Either Cache or DMA can
be the Bus Master and
effect transfers

>

ad MeBmOI’y Physical
Address (A): us |Memory
Proc. | Dpata (D) | Cache |
> < 4a|:|
R/W

Page transfers
occur while the

Processor is running

DMA

> W

\ /2 A 4

R/W

DISK

-

DMA stands for Direct Memory Access

November 9, 2005

Problems with Parallel 1I/0

6.823 L17-9
Arvind

Cached portions
of page Physical
- Memory [Memory
- Bus
Proc. |=— < >
Cache

DMA transferso

DMA

Memory — Disk: Physical memory may be

DISK

-

stale if Cache copy is dirty

Disk — Memory: Cache may have data

corresponding to the memory

November 9, 2005

6.823 L17- 10
Arvind

Snoopy Cache Goodman 1983

e |dea: Have cache watch (or snoop upon)
DMA transfers, and then “do the right

thing”

e Snoopy cache tags are dual-ported

Proc.

» Used to drive Memory Bus
> when Cache is Bus Master

A

A A

Snoopy read port

November 9, 2005

A
>l Tags and
R/W State
Data
D (lines)
Cache

R/W attached to Memory
Bus

Snoopy Cache Actions

6.823 L17- 11
Arvind

Observed Bus

Cycle Cache State Cache Action
Address not cached | No action
Read Cycle Cached, unmodified | No action

Memory — Disk

Cached, modified

Cache intervenes

Write Cycle

Disk — Memory

Address not cached

Cached, unmodified
Cached, modified

No action

Cache purges its copy

2?77

November 9, 2005

6.823 L17- 12
Arvind

Shared Memory Multiprocessor

Memory
Bus
A
Snoopy)
M, |=—— -—
1 Cache Physical
Memory
Snoopy
IVIZ Cache

——
Snoopy [)hﬂ/\
I\/IS Cache

Y

Use snoopy mechanism to keep all
processors’ view of memory coherent

November 9, 2005

6.823 L17- 13
Arvind

Cache State Transition Diagram
The MSI protocol

Each cache line has a tag M: Modified
S: Shared

Address tag I- Invalid

state
bits

P, reads
or writes

T~

Other processor
intents to write

Other processor reads M
P, writes back

Write miss

Cache state In

Read
miss S |
Read by anyC/ _Other processor
processor intents to write
processor P, fvin

November 9, 2005 esAlL

2 Processor Example

6.823 L17- 14

Arvind

P, reads
P, writes
P, reads
P, writes
P, reads
P, writes
P, writes
P, writes

November 9, 2005

P, reads
P L
1 P, reads, 4 M or writes
P, writes back —-— = _* ~
Prig e Write miss
/ R\
/ ..._...--'(\,&&0 P, intent to write
/ ,\(\\,G
Read 2 Qn
miss 7 S) |
— 5 Em— o E—— o o E— >
P, intent to write
P /D P, reads
2 P, reads, ——[M or writes
P, writes back_.—- jy
7 7 e Write miss
/J/ R
- ‘60‘&0 P, intent to write
. . AN
Read_ < ,‘/51«\
miss X

P, intent to write

6.823 L17- 15

Arvind
Observation
P, reads
Other processor reads M ‘\or writes
P, writes back Write miss

Other processor
intents to write

Read

miss g |
Read by anyC/ Other processor
processor intents to write

e |f aline is in the M state then no other
cache can have a copy of the line!

— Memory stays coherent, multiple differing copies
cannot exist

November 9, 2005 = Fo

6.823 L17- 16

Arvind
MESI: An Enhanced MSI protocol
Each cache line has a tag M: Modified Exclusive
E: Exclusive, unmodified
Address tag S: Shared
state I: Invalid
bits
. P. write /> P, read
P, write < M 1 E
or read
™~ Write miss
X
Other processor reads o @\‘ Other processor
P, writes back (\x‘ intent to write
Read miss, \0’&
shared —_ R
S I
Read by any Other processor
intent to write
processor Cache state In
processor P; i1

November 9, 2005 SERAl

Five-minute break to stretch your legs

17

6.823 L17- 18
Arvind

Cache Coherence State Encoding

block Address
AN

/ \

tag | index.] offset | |— tag VIM data block

Valid and dirty bits can be used
to encode S, I, and (E, M) states |
V=0, D=x = Invalid Hit? word

1, D=0 = Shared (not dirty)
1, D=1 = Exclusive (dirty)

November 9, 2005 4 L’Esl{m

6.823 L17- 19
Arvind

2-Level Caches

CPU CPU CPU CPU
| | | |
L1 $ L1 $ L1 $ L1 $
L2 $ L2 $ L2 $ L2 $
Enooper Enooper Snooper Snooper

——

e Processors often have two-level caches
e Small L1 on chip, large L2 off chip
e Inclusion property: entries in L1 must be in L2
Invalidation in L2 = invalidation in L1
e Snooping on L2 does not affect CPU-L1 bandwidth

What problem could occur?

November 9, 2005 = Fe M

Intervention

6.823 L17- 20
Arvind

CPU-1
|

CPU-2

A 200 cache-1

cache-2

CPU-Memory bus
|

A 100

memory (stale data)

When a read-miss for A occurs In cache-2,

a read request for A is placed on the bus
e Cache-1 needs to supply & change its state to shared
e The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

November 9, 2005

False Sharing

6.823 L17- 21
Arvind

state |blk addr |dataO | datal

dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and

not word-level

Suppose M; writes word; and M, writes word, and
both words have the same block address.

What can happen?

November 9, 2005

6.823 L17- 22
Arvind

Synchronization and Caches:
Performance Issues

Processor 1 Processor 2 Processor 3

R« 1 R« 1 R« 1
L: swap(mutex, R); L: swap(mutex, R); L: swap(mutex, R);

if <R> then goto L; if <R> then goto L; if <R> then goto L;

<critical section> <critical section> <critical section>
M[mutex] « O; M[mutex] « O; M[mutex] « O;
| | |
cache mutex=1 cache

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex

location (non-atomically) and executing a swap only if it is
found to be zero.

[rh;;lif_:._ll
November 9, 2005 Fallgle

6.823 L17- 23
Arvind

Performance Related to Bus
occupancy

In general, a read-modify-write instruction
requires two memory (bus) operations without
Intervening memory operations by other
processors

In a multiprocessor setting, bus needs to be
locked for the entire duration of the atomic read
and write operation

= expensive for simple buses

= very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

November 9, 2005 = F

6.823 L17- 24
Arvind

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve(R, a): Store-conditional(a, R):
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R < M[a]; then cancel other procs’
reservation on a;
M[a] < <R>;
status <« succeed;
else status <« fail;

If the snooper sees a store transaction to the address

In the reserve register, the reserve bit is set to O
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

November 9, 2005 = Fo

6.823 L17- 25
Arvind

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
IS not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

e Increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

e reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform a store each time

b el
November 9, 2005 esAlL

6.823 L17- 26

Out-of-Order Loads/Stores & CC

Wb-req, Inv-req, Inv-rep

load/store —

buffers pushout (Wb-rep) Memory
— | [—| cache
—

(1/S/E) | (S-rep, E-rep)
Blocking caches (S-req, E-req) CPU/Memory
One request at a time + CC = SC Interface

Non-blocking caches

Multiple requests (different addresses) concurrently + CC
= Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address T

November 9, 2005 = Fe M

T

6.823 L17- 27
Arvind

next time

Designing a Cache Coherence
Protocol

November 9, 2005 .g;;_r-é.,;'-‘.‘l L

Thank you !

28

2 Processor Example

6.823 L17- 29
Arvind

Block b

P4

Block b

P>

November 9, 2005

_ P, write P, read
P, write M E
or read \ . .
| ° Write miss
P, reads, T
P, writes back (\"&0 P, intent to write
o
Read g Q\/\(\

Mmiss

P, intent to write

_ P, write
P, write M
or read /

. /,
P, reads, R\
P, writes back R
e
Read._ \

miss

P, read
A E
g Write miss

P, intent to write

