
1

Beyond Sequential Consistency:

Relaxed Memory Models

Arvind

Computer Science and Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

2

Beyond Sequential Consistency:

Relaxed Memory Models

6.823 L20- 3
Arvind

Sequential Consistency

Processor 1 Processor 2
Store(a,10);

r

rL: 1 = Load(flag);

Store(flag,1);
Jz(r1,L);

2 = Load(a);

initially flag = 0

• In-order instruction execution

• Atomic loads and stores

SC is easy to understand but architects and compiler
writers want to violate it for performance

November 21, 2005

6.823 L20- 4
Arvind

Memory Model Issues

Architectural optimizations that are correct
for uniprocessors, often violate sequential
consistency and result in a new memory
model for multiprocessors

November 21, 2005

6.823 L20- 5
Arvind

Example 1: Store Buffers

Process 1	 Process 2

r
Store(flag1,1); Store(flag2,1);

1 := Load(flag2); r2 := Load(flag1);

Question: Is it possible that r1=0 and r2=0?
•	 Sequential consistency: No

•	 Suppose Loads can bypass stores in the
store buffer: Yes !

Total Store Order (TSO):
IBM 370, Sparc’s TSO memory model

Initially, all memory
locations contain zeros
November 21, 2005

6.823 L20- 6
Arvind

Example 2: Short-circuiting

Process 1	 Process 2

Store(flag1,1);	 Store(flag2,1);
r3 := Load(flag1);	 r4 := Load(flag2);
r1 := Load(flag2);	 r2 := Load(flag1);

Question: Do extra Loads have any effect?
•	 Sequential consistency: No

•	 Suppose Load-Store short-circuiting is
permitted in the store buffer
–	 No effect in Sparc’s TSO model
–	 A Load acts as a barrier on other loads in IBM 370

November 21, 2005

6.823 L20- 7
Arvind

Example 3: Non-FIFO Store buffers

Process 1 Process 2

Store(a,1); r1 := Load(flag);
Store(flag,1); r2 := Load(a);

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No
• With non-FIFO store buffers: Yes

Sparc’s PSO memory model

November 21, 2005

6.823 L20- 8
Arvind

Example 4: Non-Blocking Caches

Process 1	 Process 2

Store(a,1); r1 := Load(flag);

Store(flag,1); r2 := Load(a);

Question: Is it possible that r1=1 but r2=0?
•	 Sequential consistency: No

•	 Assuming stores are ordered: Yes because
Loads can be reordered

Sparc’s RMO, PowerPC’s WO, Alpha

November 21, 2005

6.823 L20- 9
Arvind

Example 5: Register Renaming

Register
Process 1 Process 2 renaming

will
Store(flag1,r1);	 Store(flag2,r2);
r

eliminate
1 := Load(flag2); r2 := Load(flag1); this edge

Initially both r1 and r2 contain 1.

Question: Is it possible that r1=0 but r2=0?
•	 Sequential consistency: No
•	 Register renaming: Yes because it removes

anti-dependencies

November 21, 2005

6.823 L20- 10
Arvind

Example 6: Speculative Execution

Process 1	 Process 2

Store(a,1); L: r1 := Load(flag);
Store(flag,1); Jz(r1,L);

r2 := Load(a);

Question: Is it possible that r1=1 but r2=0?
•	 Sequential consistency: No

•	 With speculative loads: Yes even if the
stores are ordered

November 21, 2005

6.823 L20- 11
Arvind

Example 7: Store Atomicity

Process 1 Process 2 Process 3 Process 4

r

Store(a,1); Store(a,2); r1 := Load(a); r3 := Load(a);

2 := Load(a); r4 := Load(a);

Question: Is it possible that r1=1 and r2=2
but r3=2 and r4=1 ?

•	 Sequential consistency: No

•	 Even if Loads on a processor are ordered,
the different ordering of stores can be
observed if the Store operation is not
atomic.

November 21, 2005

6.823 L20- 12
Arvind

Example 8: Causality

Process 1	 Process 2 Process 3

Store(flag1,1);	 r1 := Load(flag1); r2 := Load(flag2);

Store(flag2,1); r3 := Load(flag1);

Question: Is it possible that r1=1 and r2=1
but r3=0 ?

• Sequential consistency: No

November 21, 2005

13

Five-minute break to stretch your legs

6.823 L20- 14
ArvindWeaker Memory Models &

Memory Fence Instructions

•	 Architectures with weaker memory models
provide memory fence instructions to
prevent the permitted reorderings of loads
and stores

Store(a1, v); The Load and Store can be
Fencewr

Load(a2);
reordered if a1 =/= a2.
Insertion of Fencewr will
disallow this reordering

Similarly: Fencerr; Fencerw; Fenceww;

SUN’s Sparc: MEMBAR;
MEMBARRR; MEMBARRW; MEMBARWR; MEMBARWW

PowerPC: Sync; EIEIO

November 21, 2005

6.823 L20- 15
Arvind

Enforcing SC using Fences

Processor 1 Processor 2
Store(a,10); L: r1 = Load(flag);
Store(flag,1); Jz(r1,L);

r2 = Load(a);

Processor 1 Processor 2

Store(a,10);

Fenceww;
Store(flag,1);

L: r1 = Load(flag);
Jz(r1,L);
Fencerr;

r2 = Load(a);

Weak ordering

November 21, 2005

6.823 L20- 16
Arvind

Weaker (Relaxed) Memory Models

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally

SMP, DSM

performed

TSO, PSO,
RMO, ...

RMO=WO?

• Hard to understand and remember
• Unstable - Modèle de l’année

November 21, 2005

6.823 L20- 17

Backlash in the architecture
Arvind

community
•	 Abandon weaker memory models in

favor of SC by employing aggressive

“speculative execution” tricks.

–	 all modern microprocessors have some ability to

execute instructions speculatively, i.e., ability to
kill instructions if something goes wrong (e.g.
branch prediction)

–	 treat all loads and stores that are executed out of
order as speculative and kill them if a signal is
received from some other processor indicating that
SC is about to be violated.

November 21, 2005

6.823 L20- 18
Arvind

Aggressive SC Implementations

Loads can go out of order

Processor 1 Processor 2
miss r1 = Load(flag); Store(a,10);
hit r2 = Load(a);

kill Load(a) and the subsequent instructions if
Store(a,10) happens before Load(flag) completes

• Still not as efficient as weaker memory mode

• Scalable for Distributed Shared Memory systems?

November 21, 2005

6.823 L20- 19
Arvind

Properly Synchronized Programs

•	 Very few programmers do programming that
relies on SC; instead higher-level
synchronization primitives are used
–	 locks, semaphores, monitors, atomic transactions

•	 A “properly synchronized program” is one
where each shared writable variable is
protected (say, by a lock) so that there is no
race in updating the variable.
–	 There is still race to get the lock
–	 There is no way to check if a program is properly

synchronized

•	 For properly synchronized programs,
instruction reordering does not matter as
long as updated values are committed
before leaving a locked region.

November 21, 2005

6.823 L20- 20
Arvind

Release Consistency

• Only care about inter-processor memory ordering

at thread synchronization points, not in between

•	 Can treat all synchronization instructions as the
only ordering points

…
Acquire(lock) // All following loads get most recent written values
… Read and write shared data ..
Release(lock) // All preceding writes are globally visible before

// lock is freed.

…

November 21, 2005

