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Little’s Law


Parallelism = Throughput * Latency

or


L T N ×
= 

One Operation 

Throughput per Cycle 

Latency in Cycles 
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Example Pipelined ILP Machine 

Max Throughput, Six Instructions per Cycle 

One Pipeline Stage 
Latency 

in 
Cycles 

Two Floating-Point Units, 
Four Cycle Latency 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency 

• How much instruction-level parallelism (ILP) 

required to keep machine pipelines busy?


T = 6 L = 
(2x1 + 2x3 + 2x4) 2 2 

= 2 N = 6 × 2 = 61 
6 3 3 
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Superscalar Control Logic Scaling

Issue Width W 

Issue Group 

Previously 
Issued 

Instructions 
Lifetime L


•	 Each issued instructions must make interlock checks against 
W*L instructions, i.e., growth in interlocks ∝ W*(W*L) 

•	 For in-order machines, L is related to pipeline latencies 
•	 For out-of-order machines, L also includes time spent in 

instruction buffers (instruction window or ROB) 
•	 As W increases, larger instruction window is needed to find 

enough parallelism to keep machine busy => greater L 
=> Out-of-order control logic grows faster than W2 (~W3) 
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Out-of-Order Control Complexity: 
MIPS R10000 

Control 
Logic 

[ SGI/MIPS 
Technologies 

Joel Emer 
November 28, 2005 

Inc., 1995 ] 
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Check instruction 
dependencies 

Superscalar processor 

Sequential ISA Bottleneck 

for (i=0, i< 

Sequential 
source code 

Superscalar compiler 

operations 
Schedule 

operations 

Sequential 
machine code 

Schedule 
execution 
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a = foo(b); 

Find independent 
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VLIW: Very Long Instruction Word


Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 

FP Op 1 FP Op 2Int Op 2 Mem Op 1 Mem Op 2 Int Op 1 

Three Cycle Latency Two Floating-Point Units, 
Four Cycle Latency 

• Multiple operations packed into one instruction 
• Each operation slot is for a fixed function 
• Constant operation latencies are specified 
• Architecture requires guarantee of: 

– Parallelism within an instruction => no x-operation RAW check 
– No data use before data ready => no data interlocks 
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VLIW Compiler Responsibilities 

The compiler: 

• Schedules to maximize parallel execution 

• Guarantees intra-instruction parallelism 

• Schedules to avoid data hazards (no interlocks) 
– Typically separates operations with explicit NOPs 
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Early VLIW Machines 

• FPS AP120B (1976) 
– scientific attached array processor 
– first commercial wide instruction machine 
– hand-coded vector math libraries using software pipelining 

and loop unrolling 

• Multiflow Trace (1987)

– commercialization of ideas from Fisher’s Yale group including 

“trace scheduling” 
– available in configurations with 7, 14, or 28


operations/instruction


– 28 operations packed into a 1024-bit instruction word 

• Cydrome Cydra-5 (1987) 
– 7 operations encoded in 256-bit instruction word 
– rotating register file 



6.823, L21-10Loop Execution 

for (i=0; i<N; i++) 

B[i] = A[i] + C; 
Int1 M1 M2 FP+ 

loop: 

How many FP ops/cycle? 

ldadd r1 

fadd 

sd 

loop: ld f1, 0(r1) 

add r1, 8 

add r2, 8 

Schedule 
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Int 2 FPx 

add r2 bne 

1 fadd / 8 cycles = 0.125 

fadd f2, f0, f1 

sd f2, 0(r2) 

bne r1, r3, loop 

Compile 
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for (i=0; i<N; i++) 

B[i] = A[i] + C; 

for (i=0; i<N; i+=4) 

{ 

B[i] = A[i] + C; 

B[i+1] = A[i+1] + C; 

B[i+2] = A[i+2] + C; 

B[i+3] = A[i+3] + C; 

} 

Unroll inner loop to perform 4 
iterations at once 

of unrolling factor with final cleanup loop 
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Need to handle values of N that are not multiples 
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Unroll 4 ways 
loop: 	ld f1, 0(r1) Int1 Int 2 M1 M2 FP+ FPx


ld f2, 8(r1)

ld f3, 16(r1) loop:

ld f4, 24(r1)

add r1, 32


fadd f5, f0, f1


fadd f6, f0, f2 
 Schedule 
fadd f7, f0, f3 

fadd f8, f0, f4


sd f5, 0(r2)

sd f6, 8(r2)

sd f7, 16(r2)

sd f8, 24(r2)

add r2, 32


bne r1, r3, loop


ld f1 
ld f2 
ld f3 

add r1 ld f4 fadd f5 
fadd f6 
fadd f7 
fadd f8 

sd f5 
sd f6 
sd f7 

add r2 bne sd f8 

How many FLOPS/cycle? 

4 fadds / 11 cycles = 0.36 
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Software Pipelining 
Unroll 4 ways first	 Int1 Int 2 M1 M2 FP+ FPx 

loop: 	ld f1, 0(r1)

ld f2, 8(r1)

ld f3, 16(r1)

ld f4, 24(r1)

add r1, 32


fadd f5, f0, f1


fadd f6, f0, f2 

fadd f7, f0, f3 

fadd f8, f0, f4


sd f5, 0(r2)

sd f6, 8(r2)

sd f7, 16(r2)

add r2, 32


sd f8, -8(r2)

bne r1, r3, loop


How many FLOPS/cycle? 

loop:
iterate 

prolog 

epilog 

ld f1 
ld f2 
ld f3 

add r1 ld f4 
ld f1 fadd f5 
ld f2 fadd f6 
ld f3 fadd f7 

add r1 ld f4 fadd f8 
ld f1 sd f5 fadd f5 
ld f2 sd f6 fadd f6 

add r2 ld f3 sd f7 fadd f7 
add r1 bne ld f4 sd f8 fadd f8 

sd f5 fadd f5 
sd f6 fadd f6 

add r2 sd f7 fadd f7 
bne sd f8 fadd f8 

sd f5 
4 fadds / 4 cycles = 1 
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vs. Loop Unrolling 

time 

performance 

time 

performance 

Loop Unrolled 

Software Pipelined 

Startup overhead 

Wind-down overhead 

Loop Iteration 

Loop Iteration 

costs only once per loop, not once per iteration 
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Software pipelining pays startup/wind-down 
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What if there are no loops? 

• 
in control-flow intensive 
irregular code 

• 
individual basic blocks

Basic block 
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Branches limit basic block size 

Difficult to find ILP in 
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Trace Scheduling [ Fisher,Ellis] 

• trace, 
that represents most frequent branch 
path 

• 
heuristics to find common branch 
paths 

• 
• 

jumping out of trace 
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Pick string of basic blocks, a 

Use profiling feedback or compiler 

Schedule whole “trace” at once 
Add fixup code to cope with branches 
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Problems with “Classic” VLIW 
• Object-code compatibility 

– have to recompile all code for every machine, even for two 
machines in same generation 

• Object code size 
– instruction padding wastes instruction memory/cache 
– loop unrolling/software pipelining replicates code 

• Scheduling variable latency memory operations

– caches and/or memory bank conflicts impose statically 

unpredictable variability 

• Knowing branch probabilities 
– Profiling requires an significant extra step in build process 

• Scheduling for statically unpredictable branches

– optimal schedule varies with branch path 
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VLIW Instruction Encoding 

Group 1 Group 2 Group 3 

• Schemes to reduce effect of unused fields

– Compressed format in memory, expand on I-cache refill 

» used in Multiflow Trace 
» introduces instruction addressing challenge 

– Mark parallel groups


» used in TMS320C6x DSPs, Intel IA-64


– Provide a single-op VLIW instruction


» Cydra-5 UniOp instructions




6.823, L21-19Rotating Register Files 

Lots of duplicated code in prolog, epilog 

Solution: Allocate new set of registers for each loop iteration 

ld r1, () 
add r2, r1, #1 ld r1, () 

add r2, r1, #1 ld r1, () 
add r2, r1, #1 

ld r1, () 
add r2, r1, #1ld r1, () 
add r2, r1, #1ld r1, () 
add r2, r1, #1 

Prolog 

Epilog 

Loop 
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Problems: Scheduled loops require lots of registers, 

st r2, () 
st r2, () 

st r2, () 

st r2, () 
st r2, () 
st r2, () 
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P0 
P1 
P2 
P3 
P4 
P5 
P6 
P7 

RRB=3 

+R1 

current register set. 
Usually, split 

into rotating and non-rotating registers. 

bloop 

ld r1, () 

add r3, r2, #1ld r1, () 

add r3, r2, #1ld r1, () 

add r2, r1, #1 

Prolog 

Epilog 

Loop 

Loop closing 
branch 

decrements RRB 
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Rotating Register Base (RRB) register points to base of 
Value added on to logical register 

specifier to give physical register number.  

dec RRB 

dec RRB 

dec RRB 

dec RRB 

st r4, () 

st r4, () 

st r4, () 
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(Previous Loop Example) 

bloopld f1, () 

Three cycle load latency 
encoded as difference of 3 

in register specifier 
encoded as difference of 4 

in register specifier 
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sd f9, () fadd f5, f4, ... 

number (f4 - f1 = 3) 

Four cycle fadd latency 

number (f9 – f5 = 4) 

ld P9, () fadd P13, P12, sd P17, () bloop 

ld P8, () fadd P12, P11, sd P16, () bloop 

ld P7, () fadd P11, P10, sd P15, () bloop 

ld P6, () fadd P10, P9, sd P14, () bloop 

ld P5, () fadd P9, P8, sd P13, () bloop 

ld P4, () fadd P8, P7, sd P12, () bloop 

ld P3, () fadd P7, P6, sd P11, () bloop 

ld P2, () fadd P6, P5, sd P10, () bloop 

RRB=8 

RRB=7 

RRB=6 

RRB=5 

RRB=4 

RRB=3 

RRB=2 

RRB=1 
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6.823, L21-22Cydra-5:

Memory Latency Register (MLR)


Problem: Loads have variable latency


Solution: Let software choose desired memory latency


•	 Compiler schedules code for maximum load-use distance 
•	 Software sets MLR to latency that matches code schedule 
•	 Hardware ensures that loads take exactly MLR cycles to 


return values into processor pipeline

– Hardware buffers loads that return early 
– Hardware stalls processor if loads return late 
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Five-minute break to stretch your legs
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Intel EPIC IA-64


• EPIC is the style of architecture (cf. CISC, RISC)

– Explicitly Parallel Instruction Computing 

• IA-64 is Intel’s chosen ISA (cf. x86, MIPS) 
– IA-64 = Intel Architecture 64-bit 
– An object-code compatible VLIW 

• Itanium (aka Merced) is first implementation 
(cf. 8086) 

– First customer shipment expected 1997 (actually 2001) 
– McKinley, second implementation shipped in 2002 
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IA-64 Instruction Format


Instruction 2 Instruction 1 Instruction 0 Template 

128-bit instruction bundle 

• Template bits describe grouping of these 
instructions with others in adjacent bundles 

• Each group contains instructions that can 
execute in parallel 

bundle jbundle j-1 bundle j+1 bundle j+2 

group i-1 group i group i+1 group i+2




Joel Emer 
November 28, 2005 

6.823, L21-26 

IA-64 Registers


• 128 General Purpose 64-bit Integer Registers


• 128 General Purpose 64/80-bit Floating Point 
Registers 

• 64 1-bit Predicate Registers


• GPRs rotate to reduce code size for software 
pipelined loops 



6.823, L21-27IA-64 Predicated Execution 

– 
– 

Inst 1 
Inst 2 

Inst 3 
Inst 4 

Inst 5 
Inst 6 

Inst 7 
Inst 8 

b0: 

b1: 

b2: 

b3: 

if 

else 

then 

Four basic blocks 

Inst 1 
Inst 2 

(
|| (p2) Inst 5 
|| (p2) Inst 6 

Inst 7 
Inst 8 

Predication 

One basic block 
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Problem: Mispredicted branches limit ILP 
Solution: Eliminate hard to predict branches with predicated execution 

Almost all IA-64 instructions can be executed conditionally under predicate 
Instruction becomes NOP if predicate register false 

br a==b, b2 

br b3 
p1,p2 <- cmp a==b) 
(p1) Inst 3     
(p1) Inst 4     

Mahlke et al, ISCA95: On average 
>50% branches removed 
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Predicate Software Pipeline Stages


Single VLIW Instruction 

(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop 

Dynamic Execution 

(p1) ld r1 (p1) bloop 
(p1) ld r1 (p2) add r3 (p1) bloop 
(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop 

(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop 

(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop 

(p2) add r3 (p3) st r4 (p1) bloop 

(p3) st r4 (p1) bloop 

Software pipeline stages turned on by rotating predicate 

registers Î Much denser encoding of loops




wdata
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Fully Bypassed Datapath 

ASrc 
IRIR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 
Add 

IR 

Imm 
Ext 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

addr 

wdata 
Memory 

we 

31 

nop 

stall 

D 

E M W 

PC for JAL, ... 

BSrc 

Where does predication fit in? 
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ALU 

rdata 
Data 
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Problem: Branches restrict compiler code motion 

Inst 1 
Inst 2 

Use r1 
Inst 3 

exception 

Inst 1 
Inst 2 

Use r1 
Inst 3 

never causes 

original home block 

exception detected 

Solution: Speculative operations that don’t cause exceptions 
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br a==b, b2 

Load r1 

Can’t move load above branch 
because might cause spurious 

Load.s r1 

br a==b, b2 

Chk.s r1 

Speculative load 

exception, but sets 
“poison” bit on 

destination register 

Check for exception in 

jumps to fixup code if 

Particularly useful for scheduling long latency loads early 
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Problem: Possible memory hazards limit code scheduling


Solution: Hardware to check pointer hazards


Inst 1 
Inst 2 
Store 

Use r1 
Inst 3 

Load r1 

Data speculative load 
adds address to 

address check table 

Inst 1 
Inst 2 
Store 

Use r1 
Inst 3 

Load.a r1 

Load.c 

Store invalidates any 
matching loads in 

address check table 

Can’t move load above store Check if load invalid (or 
because store might be to same missing), jump to fixup 

address code if so 

Requires associative hardware in address check table
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Clustered VLIW 
• 

local register files and local 
functional units 

• 
interconnect between clusters 

• 

minimize communication 
overhead 

• 
processors, .e.g., Alpha 21264 

• 
embedded processors, examples 
include TI C6x series DSPs, and 
HP Lx processor 

Cluster 
Interconnect 

Local Local 

Memory Interconnect 

Cache/Memory Banks 

Cluster 
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Divide machine into clusters of 

Lower bandwidth/higher latency 

Software responsible for 
mapping computations to 

Exists in some superscalar 

Common in commercial 

Regfile Regfile 
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Limits of Static Scheduling


• Unpredictable branches 
• Variable memory latency 

(unpredictable cache misses) 
• Code size explosion 
• Compiler complexity  

Question: 

How applicable are the VLIW-inspired 
techniques to traditional RISC/CISC 
processor architectures? 
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Thank you !



