Joel Emer
December 7, 2005
6.823, L24-1

Reliable Architectures

Joel Emer
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{P—ﬁ‘h] Joel Emer
é}/ﬂﬂ December 7, 2005
CSAIL

6.823, L24-2

Strike Changes State of a Single Bit

[rp—m Joel Emer
J:E]JQQ December 7, 2005

TCsAlL 6.823, L24-3

Impact of Neutron Strike on a Si Device

Nneutron strike

Strikes release electron
& hole pairs that can be
absorbed by source &
drain to alter the state
of the device

source

Transistor Device

e Secondary source of upsets: alpha particles from packaging

"Ryl Joel Emer

1] December 7, 2005

“csalL 6.823, L24-4

Cosmic Rays Come From Deep Space

/ _s\‘\

Earth’'s Surface

e Neutron flux is higher in higher altitudes

3X - 5x increase in Denver at 5,000 feet

100x increase in airplanes at 30,000+ feet

Joel Emer
December 7, 2005

Physical Solutions are hard

e Shielding?
— No practical absorbent (e.g., approximately > 10 ft of concrete)
— unlike Alpha particles

e Technology solution: SOI?
— Partially-depleted SOI of some help, effect on logic unclear
— Fully-depleted SOI may help, but is challenging to manufacture

e Circuit level solution?

— Radiation hardened circuits can provide 10x improvement with
significant penalty in performance, area, cost

— 2-4x improvement may be possible with less penalty

i : December 7, 2005
o Triple Modular Redundancy "

(Von Neumann, 1956)

— Result

V does a majority vote on the results

Joel Emer
December 7, 2005

Dual Modular Redundancy i
(e.g., Binac, Stratus)

Error?

C — Mismatch?

Error?

e Processing stops on mismatch

e Error signal used to decide which processor be used to
restore state to other

[rp—ﬁ‘h] Joel Emer
QE_]QQ December 7, 2005

Pair and Spare Lockstep
(e.g., Tandem, 1975)

Primary

C » Mismatch?

Backup

C » Mismatch?

e Primary creates periodic checkpoints
e Backup restarts from checkpoint on mismatch

eeeeeeee

““ Redundant Multithreading "=
(e.g., Reinhardt, Mukherjee, 2000)

e \Writes are checked

Joel Emer
December 7, 2005

Component Protection

Parity cec

Error?

e Fujitsu SPARC in 130 nm technology (ISSCC 2003)
— 80% of 200k latches protected with parity
— versus very few latches protected in commodity microprocessors

I |
M

Ryl
1]

T CSAIL

Joel Emer
December 7, 2005

Strike on a bit (e.g., In register file) =™

Bit 1
Read?

yes

Bit has error
protection?

no
detection only
affects program
outcome?
yes no yes
benign fault
no error

o

benign fault
no error

detection &
correction

affects program
outcome?

Nno error

no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

Metrics

e Interval-based
— MTTF = Mean Time to Failure
— MTTR = Mean Time to Repair
— MTBF = Mean Time Between Failures = MTTF + MTTR
— Availability = MTTF / MTBF

e Rate-based
— FIT = Failure in Time = 1 failure in a billion hours
— 1 year MTTF = 102/ (24 * 365) FIT = 114,155 FIT
— SER FIT = SDC FIT + DUE FIT

Hypothetical Example

Cache: O FIT
Image removed due to + 1Q: 100K FIT
copyright restrictions. + EU- 58K EIT

Total of 158K FIT

Joel Emer
December 7, 2005
6.823, L24-12

4Hh Joel Emer
Hlsal December 7, 2005
—CEANL 6.823, L24-13

Cosmic Ray Strikes: Evidence & Reaction

e Publicly disclosed incidence

— Error logs in large servers, E. Normand, “Single Event Upset at
Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

— Sun Microsystems found cosmic ray strikes on L2 cache with
defective error protection caused Sun’s flagship servers to crash,
R. Baumann, IRPS Tutorial on SER, 2000.

— Cypress Semiconductor reported in 2004 a single soft error
brought a billion-dollar automotive factory to a halt once a
month, Zielger & Puchner, “SER — History, Trends, and
Challenges,” Cypress, 2004.

HH Joel Emer
] December 7, 2005
CSAIL 6.823, L24-14

Vulnerable Bits Growing with Moore’s Law

10000

2x GAP
1000
I 100
10 - —8—100% Vulnerable
1m LTI |o20% Vulnerable
SOSS S S S OSSS S 1000 year MTBF Goal

Typical SDC goal: 1000 year MTBF
Typical DUE goal: 10-25 year MTBF

Joel Emer
December 7, 2005
ccccc 6.823, L24-15

Architectural Vulnerability Factor (AVF)

AVF, .. = Probability Bit Matters

of Visible Errors
of Bit Flips from Particle Strikes

FIT, .= Intrinsic FIT,;, * AVF,,

JHh Joel Emer
1dlAg] December 7, 2005

CsAlL 6.823, L24-16

Architectural Vulnerability Factor
Does a bit matter?

e Branch Predictor
— Doesn’t matter at all (AVF = 0%)

e Program Counter
— Almost always matters (AVF — 100%)

Yr{f_-fﬂq1 Joel Emer
._'4 December 7, 2005

Statistical Fault Injection (SFI) ™= e
with RTL

Simulate Strike on
Latch
0]

y. 4

output
ﬁ

Does Fault Propagate
to Architectural State

| A\

+ Naturally characterizes all logical structures

{hﬁ—ﬁ’[Joel Emer
Fallsis] December 7, 2005
CSAlL 6.823, L24-18

Architecturally Correct Execution (ACE)

Program Input

Program Outputs

e ACE path requires only a subset of values to flow correctly
through the program’s data flow graph (and the machine)

- Anything else (un-ACE path) can be derated away

T CSAIL

Joel Emer

December 7, 2005

Example of un-ACE instruction:
Dynamically Dead Instruction

Dead
Instruction

Most bits of an un-ACE instruction do not affect
program output

6.823, L24-19

Dynamically

December 7, 2005
CSAIL 6.823, L24-20

f{rﬂ—’l] Joel Emer

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 2/4

r{-'_'ﬂ__,}’l Joel Emer
Lnlel] December 7, 2005

I
4, i

TCsAIL 6.823, L24-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 1/4

r{-‘-_'ﬂ__,h Joel Emer
Fallsis] December 7, 2005
CSAlL 6.823, L24-22

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 0/4

Joel Emer
December 7, 2005
6.823, L24-23

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 3/4

syl Joel Emer
Faie) December 7, 2005
6.823, L24-24

......

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

(2+1+0+3)/4
4

Average number of ACE bits in a cycle
Total number of bits in the structure

gk

T CSAIL

Joel Emer
December 7, 2005

Little’s Law for ACEs

N ace = Tace X Lace
N ace

AVF =

N total

ekl Joel Emer

1] December 7, 2005

TCSAIL 6.823, L24-26

Computing AVF

e Approach is conservative
— Assume every bit is ACE unless proven otherwise

e Data Analysis using a Performance Model
— Prove that data held in a structure is un-ACE

e Timing Analysis using a Performance Model
— Tracks the time this data spent in the structure

CSAIL

Dynamic Instruction Breakdown

Joel Emer
December 7, 2005
6.823, L24-27

DYNAMICALLY
DEAD
20%

PERFORMANCE
INST
1%

PREDICATED
FALSE
7%

Average across Spec2K slices

Joel Emer
December 7, 2005
—CEANL 6.823, L24-28

I\/Iappmg ACE & un-ACE Instructions to
the Instruction Queue

Architectural un-ACE Micro-architectural un-ACE

ACE Lifetime Analysis (1)

(e.g., write-through data cache)

e |dle is uUnACE

Fill Read Read Evict

Joel Emer
December 7, 2005
6.823, L24-29

e Assuming all time intervals are equal
e For 3/5 of the lifetime the bit is valid

e Glves a measure of the structure’s utilization
— Number of useful bits
— Amount of time useful bits are resident in structure
— Valid for a particular trace

Joel Emer
December 7, 2005
6.823, L24-30

ACE Lifetime Analysis (2)

(e.g., write-through data cache)

e Valid is not necessarily ACE

Fill 2 Read 2 Read Evict
- B
¥ v

Write-through Data Cache

e ACE % = AVF = 2/5 = 40%

e Example Lifetime Components
— ACE: fill-to-read, read-to-read
— UnACE: idle, read-to-evict, write-to-evict

ekl Joel Emer

o bt December 7, 2005

SCsAIL 6.823, L24-31

ACE Lifetime Analysis (3)

(e.g., write-through data cache)

e Data ACEness iIs a function of instruction ACEness

Fill A Read Read

Write-through Data Cache

Evict

5
4

5
4

Idle ‘

e Second Read is by an unACE instruction

 AVF = 1/5 = 20%

Instruction Queue

Joel Emer
December 7, 2005
6.823, L24-32

PREDICATED
FALSE
3%

WRONG PATH
3%

DYNAMICALLY PERFORMANCE
DEAD INST

8% 1%

ACE percentage = AVF = 29%

I

i
+157]

T CSAIL

Joel Emer
December 7, 2005

- = = - = 6.823, L24-33
Strike on a bit (e.g., In register file)
Bit X
Read?
yes 0
Bit has error benign fault
protection? no error
no detectic_)n & 10 error
correction

detection only

affects program
outcome?

affects program
outcome?

yes no yes no

benign fault
no error

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

DUE AVF of Instruction Queue with Parity

True DUE AVF
29%

Idle & Misc
38%

Uncommitted
6%

utral
16% False DUE AVF
Simpoint 11% 33%
[tanium®2-like

CPU2000
Asim Dead

CCCCC

Joel Emer
December 7, 2005
6.823, L24-35

Sources of False DUE In an
Instruction Queue

e |[nstructions with uncommitted results

—e.g., wrong-path, predicated-false
— solution: © (possibly incorrect) bit till commit

e Instruction types neutral to errors

—e.g., ho-ops, prefetches, branch predict hints
— solution: anti- © bit

e Dynamically dead instructions

— instructions whose results will not be used in future
— solution: =« bit beyond commit

......

Coping with Wrong-Path Instructions

Joel Emer

December 7, 2005

(assume parity-protected instruction gqueue)

ins/

P Execute =

Commit

Fetch mp{ Decode =P IX || RR
I DECLARE
ERROR
Instruction ON ISSUE
Cache (IC)

I

Data Cache

* Problem: not enough information at issue

6.823, L24-36

ekl Joel Emer

Bty December 7, 2005

......

The n (Possibly Incorrect) Bit ™=

(assume parity-protected instruction queue)

e
Fetch = Decode = |? RR MP{Execute»{Commit
Inst inst | Inst (i) inst (g) |inst (nr INst ()

I POST ERROR
Instruction IN = BIT ON Data Cache
Cache (IC) ISSUE

At commit point, declare error only if not wrong-path
Instruction and & bit is set

Joel Emer

I_.-J:”. '._..'_'l December 7, 2005
L

Anti_ﬂ: bit: Coping With NO_OpS 6.823, L24-38

(assume parity-protected instruction gqueue)

Y.

Fetch jmpp Decode == _|Q RR P|Execute[{Commit
inst NSt NSt INSt NSt NSt
(anti-t) (anti-x)
anti-r bit
Instruction neUtra“Z_eS Data Cache
Cache (IC) the &t bit

On issue, if the anti-TT bit is set, then do not set the TT bit

CCCCC

n bit: avoiding False DUE on

Joel Emer
December 7, 2005
6.823, L24-39

Dynamically Dead Instructions

Insti: write R1 write R1 write R1(w) write R1(x)write R1(n) write R1(rn)
Inst i+n: read R1 read R1 read R1 read R1 (m)
Fetch =) Decode (=P |Q< RR MP»{Executef» Commit
Instruction Data Cache
Cache (IC)

e Declare the error on reading R1, if wt bit is set
 If R1 isn’t read (i.e., dynamically dead), then no False DUE
e 7 bit can be used in caches & main memory ...

]H] _}_’l Joel Emer
A/pts] December 7, 2005

% False DUE AVF Eliminated *=**
(Pl = n)

PI bit till VO
commit P1 bit till register

12% commit
18%

PI bit till store
commit
8%

PI bit till register

read

14%
CPU2000
Asim anti-P1 bit
Simpoint 48%

ltanium®2-like

Practical to eliminate most of the False DUE AVF

