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Strike Changes State of a Single Bit 
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Impact of Neutron Strike on a Si Device 

• 

drain to alter the state 
of the device 
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Secondary source of upsets: alpha particles from packaging 

Strikes release electron 
& hole pairs that can be 
absorbed by source & 

neutron strike 
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6.823, L24-4

Cosmic Rays Come From Deep Space
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• Neutron flux is higher in higher altitudes 
3x - 5x increase in Denver at 5,000 feet 

100x increase in airplanes at 30,000+ feet 
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Physical Solutions are hard 

• Shielding? 
– No practical absorbent (e.g., approximately > 10 ft of concrete) 
– unlike Alpha particles 

• Technology solution: SOI? 
– Partially-depleted SOI of some help, effect on logic unclear 
– Fully-depleted SOI may help, but is challenging to manufacture 

• Circuit level solution? 
– Radiation hardened circuits can provide 10x improvement with 

significant penalty in performance, area, cost 
– 2-4x improvement may be possible with less penalty 



6.823, L24-6Triple Modular Redundancy 
(Von Neumann, 1956) 

V does a majority vote on the results 
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6.823, L24-7Dual Modular Redundancy 
(e.g., Binac, Stratus) 

• 
• 

restore state to other 
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Processing stops on mismatch 
Error signal used to decide which processor be used to 



6.823, L24-8Pair and Spare Lockstep 

• 
• 

M 

M 

C Mismatch? 

Primary 

M 

M 

C Mismatch? 

Backup 

Joel Emer 
December 7, 2005 

(e.g., Tandem, 1975) 

Primary creates periodic checkpoints 
Backup restarts from checkpoint on mismatch 



6.823, L24-9Redundant Multithreading 
(e.g., Reinhardt, Mukherjee, 2000) 

• 

X W X X W X X W 

X W X X W X X W 

C Fault? 

Leading Thread 

Trailing Thread 
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Writes are checked 



6.823, L24-10Component Protection 
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• Fujitsu SPARC in 130 nm technology (ISSCC 2003) 
– 80% of 200k latches protected with parity 
– versus very few latches protected in commodity microprocessors 
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6.823, L24-11Strike on a bit (e.g., in register file) 

Bit 

Bit has error 
protection? 

yes no 

detection & 
correction 

no no error 

benign fault 
no error 

detection only 

outcome? 

True DUE False DUE 

noyes no 

outcome? 

benign fault 
no error SDC 

yes no 
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Read? 

affects program affects program 

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error 
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Metrics 
6.823, L24-12 

• Interval-based  
– MTTF = Mean Time to Failure 
– MTTR = Mean Time to Repair 
– MTBF = Mean Time Between Failures = MTTF + MTTR 
– Availability = MTTF / MTBF 

• Rate-based  
– FIT = Failure in Time = 1 failure in a billion hours


– 1 year MTTF = 109 / (24 * 365) FIT = 114,155 FIT


– SER FIT = SDC FIT + DUE FIT 

Hypothetical Example 
Cache: 0 FIT


Image removed due to + IQ: 100K FIT

copyright restrictions. + FU: 58K FIT


Total of 158K FIT
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Cosmic Ray Strikes: Evidence & Reaction


• Publicly disclosed incidence 

– Error logs in large servers, E. Normand, “Single Event Upset at 
Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996. 

– Sun Microsystems found cosmic ray strikes on L2 cache with 
defective error protection caused Sun’s flagship servers to crash, 
R. Baumann, IRPS Tutorial on SER, 2000. 

– Cypress Semiconductor reported in 2004 a single soft error 

brought a billion-dollar automotive factory to a halt once a 

month, Zielger & Puchner, “SER – History, Trends, and 

Challenges,” Cypress, 2004.
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# Vulnerable Bits Growing with Moore’s Law 
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Architectural Vulnerability Factor (AVF)


AVFbit = Probability Bit Matters 

# of Visible Errors 
=# of Bit Flips from Particle Strikes 

FITbit= intrinsic FITbit * AVFbit 
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6.823, L24-16 

Architectural Vulnerability Factor

Does a bit matter?


• Branch Predictor 
– Doesn’t matter at all  (AVF = 0%) 

• Program Counter 
– Almost always matters (AVF ~ 100%) 
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6.823, L24-17Statistical Fault Injection (SFI) 

with RTL


LogicLogic
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Latch 
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output 

Does Fault Propagate 
to Architectural State 

+ Naturally characterizes all logical structures
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6.823, L24-18 

Architecturally Correct Execution (ACE)


Program Input 

Program Outputs 

•	 ACE path requires only a subset of values to flow correctly 
through the program’s data flow graph (and the machine) 

•	 Anything else (un-ACE path) can be derated away 
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6.823, L24-19

Example of un-ACE instruction: 
Dynamically Dead Instruction 

Dynamically 
Dead 
Instruction 

Most bits of an un-ACE instruction do not affect 
program output 
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6.823, L24-20 

Vulnerability of a structure 

AVF = fraction of cycles a bit contains ACE state


T = 1 ACE% = 2/4 
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Vulnerability of a structure 

AVF = fraction of cycles a bit contains ACE state


T = 2 ACE% = 1/4 
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6.823, L24-22 

Vulnerability of a structure 

AVF = fraction of cycles a bit contains ACE state


T = 3 ACE% = 0/4 
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6.823, L24-23 

Vulnerability of a structure 

AVF = fraction of cycles a bit contains ACE state


T = 4 ACE% = 3/4 
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6.823, L24-24 

Vulnerability of a structure 

AVF = fraction of cycles a bit contains ACE state


( 2 + 1 + 0 + 3 ) / 4( 2 + 1 + 0 + 3 ) / 4
= 44

Average number of ACE bits in a cycleAverage number of ACE bits in a cycle
= Total number of bits in the structureTotal number of bits in the structure
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6.823, L24-25

Little’s Law for ACEs


Nace = Tace × Lace 

NaceAVF = 
Ntotal
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Computing AVF 
6.823, L24-26 

• Approach is conservative 
– Assume every bit is ACE unless proven otherwise 

• Data Analysis using a Performance Model 
– Prove that data held in a structure is un-ACE 

• Timing Analysis using a Performance Model 
– Tracks the time this data spent in the structure 
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6.823, L24-27 

Dynamic Instruction Breakdown


20% 

1% 

26% 

ACE 
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7% 
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PERFORMANCE 
INST 

NOP 

PREDICATED 
FALSE 



ACE
Inst

6.823, L24-28

Mapping ACE & un-ACE Instructions to 
the Instruction Queue 

Architectural un-ACE Micro-architectural un-ACE 

Wrong-
Path 
Inst 

IdleNOP Prefetch ACE 
Inst 

Ex-
ACE 
Inst 

Joel Emer 
December 7, 2005 



6.823, L24-29ACE Lifetime Analysis (1) 
(e.g., write-through data cache) 

Idle IdleValidValidValid 

Fill Read Read Evict 
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• Idle is unACE 

• Assuming all time intervals are equal 
• For 3/5 of the lifetime the bit is valid 
• Gives a measure of the structure’s utilization 

– Number of useful bits 
– Amount of time useful bits are resident in structure 
– Valid for a particular trace 
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Idle Idle 

Fill Read Read Evict 

Write-through Data Cache 

ACE Lifetime Analysis (2) 
(e.g., write-through data cache) 
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• Valid is not necessarily ACE 

• ACE % = AVF = 2/5 = 40% 
• Example Lifetime Components 

– ACE: fill-to-read, read-to-read 
– unACE: idle, read-to-evict, write-to-evict 
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Idle Idle 

Fill Read Read Evict 

Write-through Data Cache 

ACE Lifetime Analysis (3) 
(e.g., write-through data cache) 
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• Data ACEness is a function of instruction ACEness 

• Second Read is by an unACE instruction 

• AVF = 1/5 = 20% 
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15% 
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8% 

3% 

1% 

NOP 

IDLE 

Ex-ACE 

WRONG PATH 

DYNAMICALLY 
DEAD 

PREDICATED 
FALSE 

PERFORMANCE 
INST 

ACE percentage = AVF = 29% 
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Strike on a bit (e.g., in register file) 

Bit 

Bit has error 
protection? 

yes no 

detection & 
correction 

no no error 

benign fault 
no error 

detection only 

outcome? 

True DUE False DUE 

noyes no 

outcome? 

benign fault 
no error SDC 

yes no 
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Read? 

affects program affects program 

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error 
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6.823, L24-34

29% 

6% 

l 
16% 

11% 

Idl i
38% 

DUE AVF of Instruction Queue with Parity 

False DUE AVF 
33% 

Asim 

True DUE AVF 

Uncommitted 

NeutraDynamically 
Dead 

e & Msc 

CPU2000 

Simpoint 
Itanium®2-like 
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6.823, L24-35Sources of False DUE in an 

Instruction Queue


• Instructions with uncommitted results

– e.g., wrong-path, predicated-false 
– solution: π (possibly incorrect) bit till commit 

• Instruction types neutral to errors 
– e.g., no-ops, prefetches, branch predict hints 
– solution: anti- π bit 

• Dynamically dead instructions 
– instructions whose results will not be used in future 
– solution: π bit beyond commit 
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Coping with Wrong-Path Instructions 
(assume parity-protected instruction queue) 

DECLARE 
ERROR 

ON ISSUE 

IQFetch Execute Commit 

Instruction 
Cache (IC) 

Data Cache 

RR 
inst
X 
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• Problem: not enough information at issue 

Decode 
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6.823, L24-37The π (Possibly Incorrect) Bit 
(assume parity-protected instruction queue) 

At commit point, declare error only if not wrong-path 
instruction and ππ bit is setbit is set

IQFetch Decode Execute Commit 

Instruction 
Cache (IC) 

Data Cache 

RR 
inst inst 

POST ERROR 
IN ππ BIT ON 

ISSUE 

inst (ππ)) inst (ππ)) inst (ππ)) inst (ππ))
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6.823, L24-38

Anti-π bit: coping with No-ops 
(assume parity-protected instruction queue) 

On issue, if the anti-ππ bit is set, then do not set thebit is set, then do not set the ππ bitbit

IQFetch Decode Execute Commit 

Instruction 
Cache (IC) 

Data Cache 

RR 
inst inst 

(anti-ππ))
inst 

(anti-ππ))
inst inst inst 

anti-ππ bitbit 
neutralizesneutralizes 

thethe ππ bitbit



6.823, L24-39π bit: avoiding False DUE on 
Dynamically Dead Instructions 

IQFetch Execute Commit 

Instruction 
Cache (IC) 

Data Cache 

RR 

write R1 write R1 write R1(π) write R1(π) write R1(π) write R1(π) 
read R1 read R1 read R1 read R1 (π) 

π bit is set 

• π bit can be used in caches & main memory … 

Inst i: 
Inst i+n: 
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Decode 

• Declare the error on reading R1, if 
• If R1 isn’t read (i.e., dynamically dead), then no False DUE 
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% False DUE AVF Eliminated 6.823, L24-40 

(PI = π) 
PI bit till I/O


commit PI bit till register

12% commit


18%

PI bit till store 


commit

8%


PI bit till register

read

14%


CPU2000 

Asim anti-PI bit


Simpoint 48%


Itanium®2-like


Practical to eliminate most of the False DUE AVF 


