
Joel Emer
December 12, 2005

6.823, L25-1

Virtual Machines and Dynamic

Translation:

Implementing ISAs in Software

Joel Emer
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Based on the material prepared by
Krste Asanovic and Arvind

Joel Emer
December 12, 2005

Software Applications
6.823, L25-2

How is a software application encoded?
– What are you getting when you buy a software application?
– What machines will it work on?
– Who do you blame if it doesn’t work,

» i.e., what contract(s) were violated?

Joel Emer
December 12, 2005

6.823, L25-3ISA + Environment =

Virtual Machine

ISA alone not sufficient to write useful programs, need I/O

•	 Direct access to memory mapped I/O via load/store instructions
problematic

–	 time-shared systems
–	 portability

•	 Operating system responsible for I/O
–	 sharing devices and managing security
–	 hiding different types of hardware (e.g., EIDE vs. SCSI disks)

•	 ISA communicates with operating system through some

standard mechanism, i.e., syscall instructions

–	 example convention to open file:
addi r1, r0, 27 # 27 is code for file open

addu r2, r0, rfname # r2 points to filename string
syscall # cause trap into OS

On return from syscall, r1 holds file descriptor

Joel Emer
December 12, 2005

6.823, L25-4Application Binary Interface

(ABI)

•	 Programs are usually distributed in a binary format that
encodes the program text (instructions) and initial values of
some data segments (ABI)

•	 Virtual machine specifications include
–	 which instructions are available (the ISA)
–	 what system calls are possible (I/O, or the environment)
–	 what state is available at process creation

•	 Operating system implements the virtual machine
– at process startup, OS reads the binary program, creates an

environment for it, then begins to execute the code, handling traps for
I/O calls, emulation, etc.

Joel Emer
December 12, 2005

OS Can Support Multiple VMs
6.823, L25-5

•	 Virtual machine features change over time with new
versions of operating system

–	 new ISA instructions added
–	 new types of I/O are added (e.g., asynchronous file I/O)

•	 Common to provide backwards compatibility so old
binaries run on new OS

– SunOS 5 (System V Release 4 Unix, Solaris) can run binaries

compiled for SunOS4 (BSD-style Unix)

–	 Windows 98 runs MS-DOS programs
–	 Solaris 10 runs Linux binaries

•	 If ABI needs instructions not supported by native
hardware, OS can provide in software

Joel Emer
December 12, 2005

6.823, L25-6Supporting Multiple OSs on

Same Hardware

•	 Can virtualize the environment that an operating system

sees, an OS-level VM

•	 Hypervisor layer implements sharing of real hardware
resources by multiple OS VMs that each think they have a
complete copy of the machine

– Popular in early days to allow mainframe to be shared by multiple
groups developing OS code (VM/360)

– Used in modern mainframes to allow multiple versions of OS to be
running simultaneously Î OS upgrades with no downtime!

– Example for PCs: VMware allows Windows OS to run on top of Linux (or
vice-versa)

•	 Requires trap on access to privileged hardware state
–	 easier if OS interface to hardware well defined

Joel Emer
December 12, 2005

6.823, L25-7

ISA Implementations Partly in Software

Often good idea to implement part of ISA in software:

•	 Expensive but rarely used instructions can cause trap to OS
emulation routine:

– e.g., decimal arithmetic in µVax implementation of VAX ISA

•	 Infrequent but difficult operand values can cause trap
– e.g., IEEE floating-point denormals cause traps in almost all

floating-point unit implementations

•	 Old machine can trap unused opcodes, allows binaries for new
ISA to run on old hardware

– e.g., Sun SPARC v8 added integer multiply instructions, older v7
CPUs trap and emulate

Joel Emer
December 12, 2005

6.823, L25-8Supporting Non-Native ISAs
Run programs for one ISA on hardware with different ISA

• Emulation (OS software interprets instructions at run-time)
– E.g., OS for PowerPC Macs had emulator for 68000 code

• Binary Translation (convert at install and/or load time)
– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->Alpha and MIPS->Alpha

• Dynamic Translation (non-native ISA to native ISA at run time)
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing

• Run-time Hardware Emulation
– IBM 360 had IBM 1401 emulator in microcode
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
– ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-

visible ISAs!)

Joel Emer

Emulation	
December 12, 2005

6.823, L25-9

•	 Software instruction set interpreter fetches and decodes
one instruction at a time in emulated VM

Memory image of
guest VM lives in

host emulator data
memory

Guest
ISA

Code

Guest
ISA

on Disk

Guest
ISA

Code

Guest
ISA

Guest
Stack

Load into

memory

Emulator Data

Emulator Code

Emulator Stack

Data	

Executable

Data emulator

fetch-decode loop
while(!stop)
{
inst = Code[PC];
PC += 4;
execute(inst);

}

Joel Emer

Emulation
December 12, 2005

6.823, L25-10

• Easy to code, small code footprint

• Slow, approximately 100x slower than native

execution for RISC ISA hosted on RISC ISA

• Problem is time taken to decode instructions

– fetch instruction from memory
– switch tables to decode opcodes
– extract register specifiers using bit shifts
– access register file data structure
– execute operation
– return to main fetch loop

Joel Emer

6.823, L25-11Binary Translation	
December 12, 2005

•	 Each guest ISA instruction translates into some set of host (or
native) ISA instructions

•	 Instead of dynamically fetching and decoding instructions at
run-time, translate entire binary program and save result as
new native ISA executable

•	 Removes interpretive fetch-decode overhead

•	 Can optimize translated code to improve performance
–	 register allocation for values flowing between guest ISA instructions
–	 native instruction scheduling to improve performance
–	 remove unreachable code
–	 inline assembly procedures
–	 remove dead code e.g., unneeded ISA side effects

Joel Emer

6.823, L25-12Binary Translation, Take 1
December 12, 2005

Guest
ISA

Code

Guest
ISA

on Disk

Native
ISA

Code

Guest
ISA

on Disk

Native

Translate to

Data
unchanged

might need extra data
Data

Executable

Data

Executable

Data

native ISA code

Native translation

workspace

6.823, L25-13

Binary Translation Problems
Branch and Jump targets

j L1
...

j
translation

lw
translation

jr
translation

block jumps to native
translation of lw

Where should the jump register go?

Joel Emer
December 12, 2005

– guest code:

L1: lw r1, (r4)
jr (r1)

– native code

native jump at end of

Joel Emer

PC Mapping Table	
December 12, 2005

6.823, L25-14

•	 Table gives translated PC for each guest PC

•	 Indirect jumps translated into code that looks in table to
find where to jump to

– can optimize well-behaved guest code for subroutine call/return by
using native PC in return links

•	 If can branch to any guest PC, then need one table entry
for every instruction in hosted program Î big table

•	 If can branch to any PC, then either
–	 limit inter-instruction optimizations
– large code explosion to hold optimizations for each possible entry

into sequential code sequence

•	 Only minority of guest instructions are indirect jump
targets, want to find these

–	 design a highly structured VM design
–	 use run-time feedback of target locations

Joel Emer
December 12, 2005

Binary Translation Problems
6.823, L25-15

• Self-modifying code!
– sw r1, (r2) # r2 points into code space

• Rare in most code, but has to be handled if
allowed by guest ISA

• Usually handled by including interpreter and
marking modified code pages as “interpret only”

• Have to invalidate all native branches into
modified code pages

Joel Emer

6.823, L25-16Binary Translation, Take 2
December 12, 2005

Executable
on Disk

Guest
ISA

Code

Guest
ISA

on Disk

Native
ISA Code

PC

Table

Guest ISA
Code

Guest ISA

Native

Translate to

data in native

Data

Executable

Mapping

Data

Emulator

native ISA code

Keep copy of
code and

data segment

Mapping table used for
indirect jumps and to
jump from emulator

back into native
translations

Translation has to check

then jump to emulator
for modified code pages

Emulator used for run­
time modified code,

checks for jumps back
into native code using

PC mapping table

Joel Emer
December 12, 2005

IBM System/38 and AS/400
6.823, L25-17

•	 System/38 announced 1978, AS/400 is follow-on line
•	 High-level instruction set interface designed for binary

translation
•	 Memory-memory style instruction set, never directly

executed by hardware

Replaced by modified
Used 48-bit CISC PowerPC cores in newer
engine in earlier AS/400 machines

machines

User Applications

Languages,
Database,
Utilities

Control
Program
Facility

High-Level Architecture
Interface

Vertical Microcode

Horizontal Microcode

Hardware Machine

Joel Emer
December 12, 2005

Dynamic Translation
6.823, L25-18

• Translate code sequences as needed at run­
time, but cache results

• Can optimize code sequences based on
dynamic information (e.g., branch targets
encountered)

• Tradeoff between optimizer run-time and time
saved by optimizations in translated code

• Technique used in Java JIT (Just-In-Time)
compilers

• Also, Transmeta Crusoe for x86 emulation

Joel Emer
December 12, 2005

6.823, L25-19

Dynamic Translation Example

Data RAM

Disk

x86
Binary

Runtime -- Execution

x86
Binary

Code Cache Code Cache
Tags

Translator

x86 Parser &
High Level
Translator

High Level
Optimization

Low Level
Code Generation

Low Level
Optimization and

Scheduling

6.823, L25-20

Chaining

Runtime -­
Execution

Code CacheCode Cache
Tags

Pre Chained
add %r5, %r6, %r7

#of next block

j dispatch loop

Chained
add %r5, %r6, %r7

j physical location of translated

code for next_block

Joel Emer
December 12, 2005

li %next_addr_reg, next_addr #load address

Joel Emer

Transmeta Crusoe December 12, 2005
6.823, L25-21

(2000)

• Converts x86 ISA into internal native VLIW
format using software at run-time Î “Code
Morphing”

• Optimizes across x86 instruction boundaries to
improve performance

• Translations cached to avoid translator
overhead on repeated execution

• Completely invisible to operating system –
looks like x86 hardware processor

[Following slides contain examples taken from
“The Technology Behind Crusoe Processors”,

Transmeta Corporation, 2000]

Joel Emer
December 12, 2005

Transmeta VLIW Engine
6.823, L25-22

•	 Two VLIW formats, 64-bit and 128-bit, contains 2 or 4
RISC-like operations

•	 VLIW engine optimized for x86 code emulation
–	 evaluates condition codes the same way as x86
–	 has 80-bit floating-point unit
–	 partial register writes (update 8 bits in 32 bit register)

•	 Support for fast instruction writes
–	 run-time code generation important

•	 Initially, two different VLIW implementations, low-end
TM3120, high-end TM5400

–	 native ISA differences invisible to user, hidden by translation system
–	 new eight-issue VLIW core released (Efficeon/TM8000 series)

6.823, L25-23Crusoe System

VLIW Processor

Crusoe CPU

x86 DRAMCode Morph DRAM Flash

Code Morph
Compiler Code

(VLIW)

Workspace

Portion of system DRAM is
used by Code Morph

software and is invisible to
x86 machine

Crusoe
Boot
Flash
ROM

Compressed
compiler held in

boot ROM

System DRAM

Joel Emer
December 12, 2005

Inst. Cache

Data Cache

x86 BIOS

Translation
Cache (VLIW)

Joel Emer

6.823, L25-24Transmeta Translation
December 12, 2005

x86 code:
addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

first step, translate into RISC ops:

ld %r30, [%esp] # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax, set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

Joel Emer

6.823, L25-25Compiler Optimizations
December 12, 2005

RISC ops:
ld %r30, [%esp] # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax, set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

Optimize:
ld %r30, [%esp] # load from stack only once

add %eax, %eax, %r30

add %ebx, %ebx, %r30 # reuse data loaded earlier

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5 # only this cond. code needed

Joel Emer
December 12, 2005

6.823, L25-26Scheduling
Optimized RISC ops:

ld %r30, [%esp] # load from stack only once

add %eax, %eax, %r30

add %ebx, %ebx, %r30 # reuse data loaded earlier

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5 # only this cond. code needed

Schedule into VLIW code:
ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Joel Emer
December 12, 2005

Translation Overhead
6.823, L25-27

• Highly optimizing compiler takes considerable
time to run, adds run-time overhead

• Only worth doing for frequently executed code

• Translation adds instrumentation into
translations that counts how often code
executed, and which way branches usually go

• As count for a block increases, higher
optimization levels are invoked on that code

Joel Emer
December 12, 2005

6.823, L25-28Exceptions
Original x86 code:

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

Scheduled VLIW code:
ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

• x86 instructions executed out-of-order with respect to

original program flow

• Need to restore state for precise traps

Joel Emer
December 12, 2005

6.823, L25-29

Shadow Registers and Store Buffer

•	 All registers have working copy and shadow copy

•	 Stores held in software controlled store buffer, loads can
snoop

•	 At end of translation block, commit changes by copying
values from working regs to shadow regs, and by
releasing stores in store buffer

•	 On exception, re-execute x86 code using interpreter

Joel Emer
December 12, 2005

Handling Self-Modifying Code
6.823, L25-30

• When a translation is made, mark the
associated x86 code page as being translated
in page table

• Store to translated code page causes trap, and
associated translations are invalidated

