
6.824 - Spring 2006

Getting started with 6.824 labs

Introduction

The 6.824 labs require you to program C/C++ on FreeBSD machines. This document
should help you on your way with logging into the machines, reading manual pages,
compiling C/C++ programs, and understanding Makefiles that we will give you.

Logging in with ssh

After you get your login and password, you can log into class machines using ssh, which
is installed on Athena. Other Unix versions are available on http://www.openssh.com/.
Windows versions come with Cygwin. If you just want ssh for Windows without the
fancy stuff, you can also just install PuTTY. You can download NiftyTelnet SSH for
MacOS at http://www.lysator.liu.se/~jonasw/freeware/niftyssh/, or just use command line
ssh from the Terminal.app.

% ssh student@pain.lcs.mit.edu

will log you in as student on machine pain.lcs.mit.edu. (Don't type the ``%''!)
Needless to say, you need to replace student with the username you receive from us
when you register for lab. If there's a problem with pain.lcs.mit.edu, you can check out
the list of class machines.

If you are the adventurous type, you can set up your ssh so that you can log in without
having to type a password each time. (The ssh man page may also be useful here.)

Finding and reading manual pages

If you need to find information on Unix commands, system calls, configuration files, etc.,
then man is your friend. For example,

% man socket

gives you the man page for the socket system call. (man man gives you the manual page
for man itself.) Note that it may be necessary to specify which section of the manual you
wish to read. For example, man read may yield the man page for the wrong read---the
shell read rather than the read system call. If this is the case, try man 2 read. In this
case, 2 specifies the manual section; there are 8 sections. You can find relevant man
pages (and what section they are in) using man -k. For example,

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

http://www.openssh.com/
http://cygwin.com/
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://www.lysator.liu.se/%7Ejonasw/freeware/niftyssh/
http://www.google.com/search?q=passwordless+login+ssh
http://www.google.com/search?q=passwordless+login+ssh

% man -k read

shows a one-line description for each man page that has the word ``read'' in the
description.

Compiling and linking simple programs

A compiler takes one or more source files and produces object files that contain machine
code. Object files contain machine code and usually have a .o extension. C source files
usually have a .c extension and g++ files usually have a .C or .cc extension. Object files
may have undefined symbols (names of functions or global variables); linking object files
into an executable resolves these undefined symbols. Note that one of the object files
must have a main() function to create an executable.

Object files can be linked together to form an executable, provided that one (and only
one) of the object files defines a main() function.

An executable is similar to an object file in that it contains machine code, but an
executable contains some additional bits that allow the operating system to start the
program and run it.

Compiling a source file into the equivalent object file is done using g++ -c. For example:

% g++ -c hello.C -o hello.o

The -c flag indicates pure compilation without linking. Even if hello.C defines main(),
the resulting hello.o is not executable. To compile a source file into an executable, omit
the -c flag:

% g++ hello.C -o hello

This creates an executable hello. Note that g++ will bark at you if you try to create an
executable without a definition of main().

Note that all these examples assume you are compiling g++ files. Use gcc instead of g++
if you are compiling plain old C files.

Multiple object files can be linked together into one executable. Suppose we have the
following files:

common.h

#ifndef __COMMON_H
#define __COMMON_H
void hello();
void bye();
#endif // __COMMON_H

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

hello.C

#include <stdio.h>
#include "common.h"
void hello() {
 printf("hello!\n");
}

bye.C

#include <stdio.h>
#include "common.h"
void bye() {
 printf("bye!\n");
}

main.C

#include "common.h"
int main() {
 hello();
 bye();
}

To turn these files into a working executable, do:

% g++ main.C hello.C bye.C -o hellobye

This compiles main.C, bye.C, and hello.C and links them together into an executable
called hellobye. The header file common.h declares---but does not define---hello() and
bye() so that the compiler can compile main.C, without knowing the details of their
implementation.

Linking is only possible when no two object files try to define C or g++ functions or
global variables with the same name. For example, try declaring a variable int foo in
both hello.C and bye.C. Compiling each file separately is no problem, but linking fails
with a multiple definition of `foo' error. The same is true for functions.
Depending on what you want, you can avoid this problem in one of a number of ways:

• If you want hello.C and bye.C to share variable foo, you can declare one of
them as extern int foo.

• If you want hello.C and bye.C to each have their own independent variable
named foo, then declare one or both of them as static int foo. Keyword
static limits the scope of the declaration to just the current file.

• The best way to solve this problem is to avoid global variables altogether; use
function arguments, local variables, or g++ class members instead.

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

Makefiles

While doing the 6.824 labs you probably don't need to create your own Makefiles from
scratch, because we will give them to you. However, you may need to modify them. This
section gives a quick overview of what a Makefile is and how it is used.

A Makefile is used in conjuction with gmake and describes how different source and
header files in a project relate and how to compile and link them. A Makefile usually
bears the meaningful name Makefile and its contents are probably roughly similar to this
example:

Makefile

hellobye : libhellobye.a main.o
 g++ main.o -L. -lhellobye -o hellobye

libhellobye.a : hello.o bye.o
 ar cru libhellobye.a hello.o bye.o
this command puts hello.o and bye.o in a library libhellobye.a

hello.o : hello.C common.h
 g++ -c hello.C -o hello.o

bye.o : bye.C common.h
 g++ -c bye.C -o bye.o

main.o : main.C common.h
 g++ -c main.C -o main.o

clean :
 rm -f *.a *.o hellobye

This Makefile has 6 sections. Each section describes a dependency on the first line and
some action on the second. A dependency consists of a target file (before the colon) and
prerequisite files (after the colon). Lines starting with # are comments.

When you run gmake, it will execute a target's action if any of the prerequisite files have
been modified since the target was last modified. gmake executes the action in much the
same way as if you had typed it to the shell. gmake only tries to make sure that the very
first target in the Makefile is up to date. However, if the first target depends on other
targets, gmake may end up executing multiple actions.

The first section in the Makefile above states that the file hellobye depends on
libhellobye.a and main.o. If either libhellobye.a or main.o is newer than
hellobye, then hellobye is rebuilt. Building the whole project is now as simple as
typing

% gmake

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

If you write your Makefile correctly, gmake will only compile and link those parts of a
project that have changed since the last gmake. If your project is big and the full
compile/link process takes a long time, then gmake is your friend. It saves time.

Notice that the last section in this Makefile is not a real dependency, but allows the user
to conveniently call

% gmake clean

to remove all object files, the library, and the executable.

Makefiles can get pretty complicated, but this gentle introduction may very well suffice
for your 6.824 needs. If you're interested, read the full gmake manual (info make). It's
fabulous.

Version Control

You may find it useful to keep track of different versions of your work as you progress. A
version control system allows you to checkpoint your work and may help you track down
regressions in your code. The change log tracked by the VCS can serve to remind you
what your intention was in making a particular change days or weeks afterwards.

The lab machines have several popular version control systems available including CVS,
Subversion, and darcs. If you are familiar with one of these systems, you are welcome to
use it. If you are interested in learning one, you ought to be able to get started relatively
quickly using darcs. There is copious documentation for each of these tools available on
the web.

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://www.darcs.net/
http://wiki.darcs.net/DarcsWiki/GettingStarted

	6.824 - Spring 2006
	Getting started with 6.824 labs
	Introduction
	Logging in with ssh
	Finding and reading manual pages
	Compiling and linking simple programs
	common.h
	hello.C
	bye.C
	main.C

	Makefiles
	Makefile

	Version Control

