
Appendix 4-B. Case study of the Network File System (NFS)

The network file system (NFS), designed by Sun Microsystems, Inc. in the 1980s, is a
clientlservice application that provides shared file storage for clients across a network. An
NFS client grafts a remote file system onto the client's local file system name space and makes
i t behave like a local UNIX file system (see appendix 2-A). Multiple clients can mount the
same remote file system so that users can share files.

The need for NFS arose because of technology improvements. Before the 1980s
computers were so expensive that each one had to be shared among multiple users and each
computer had a single file system. But a benefit of the economic pressure was it allowed for
easy collaboration, because users could share files easily. In the early 1980s, i t became
economically feasible to build workstations, which allowed each engineer to have a private
computer. But, users desired to still have a shared file system for ease of collaboration. NFS
provides exactly that: i t allows a user a t any workstation to use files stored on a shared server,
a powerful workstation with local disks but often without a graphical display.

NFS also simplifies the management of a collection of workstations. Without NFS, a
system administrator must manage each workstation and, for example, arrange for backups
of each workstation's local disk. NFS allows for centralized management; for example, a
system administrator needs to back up only the disks of the server to archive the file system.
In the 1980s, the setup had also a cost benefit: NFS allowed organizations to buy workstations
without disks, saving the cost of a disk interface on every workstation and, a t the time, the
cost of unused disk space on each workstation.

The design of NFS had four major goals. It should work with existing applications,
which means NFS ideally should provide the same semantics a s a local UNIX file system.
NFS should be deployable easily, which means its implementation should be able to retrofit
into existing UNIX systems. The client should be implementable in other operating systems
such as Microsoft's DOS, so that a user on a personal computer can have access to the files on
a n NFS server; this goal implies that the client design cannot be too UNIX-specific. Finally,
NFS should be efficient enough to be tolerable to users, but it doesn't have to provide as high
performance as local file systems. NFS only partially achieves these goals.

This appendix describes version 2 of NFS. Version 1was never deployed outside of Sun
Microsystems, while version 2 has been in use since 1987. The appendix concludes with a brief
summary of the changes in version 3 (1990s) and 4 (early 2000s), which address weaknesses
in version 2.

1. Naming remote files and directories

To programs, NFS appears a s a UNIX file system providing the file interface presented
in appendix 2-A. User programs can name remote files in the same way as local files. When

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4 4 0 Enforcing Modularity with Clients and Services

a user program invokes, say, OPEN ("luserslsmith/.profile", READONLY),it cannot tell from the
path name whether "users" or "smith are local or remote directories.

To make naming remote file transparent to users and their programs, the client must
mount the root directory of a remote file system on the local name space. NFS performs this
operation by using a separate program, called the mounter. This program serves a similar
function as the MOUNT call (see page 2-62); i t grafts the remote file system- named by
hostpath, where host is a DNS name andpath a path name-onto the local file name space. The
mounter sends a remote procedure call to the file server host and asks for a file handle, a
32-byte name, for the inode ofpath. On receiving the reply, the client marks the mount point
in the local file system as a remote file system. It also remembers the file handle for path and
the network address for the server.

NFS doesn't use path names to name files and directories internally, but instead uses
file handles. To the client a file handle is a 32-byte opaque name that identifies an inode on a
remote server. A client obtains file handles from the server when the client mounts a remote
file system or it looks up a file in a directory on the server. In all subsequent remote
procedures calls to the server for that file, the client includes the file handle.

One might wonder why the NFS designers chose to use file handles to name files and
directories instead of path names. To see why consider the following scenario with two user
programs running on different clients:

Program 1 on client 1 Program 2 on client 2

I
I

CHDIR ("dirl"); Time
fd = OPEN ("f',READONLY);

RENAME ("dirl", "dir2");
RENAME ("dir3", "dirl");

READ Ifd, buf, n);

When program 1invokes READ, does the program read data from "dirllf", or "dir2lf"? If the
two programs where running on the same computer and sharing a local UNIX file system,
program 1would read "dir2lf", according to the UNIX specification. The goal is that NFS
should provide the same behavior. Unfortunately, if the NFS client were to use path names,
then the READ call would result in a remote procedure for the file "dirllf". To avoid this
problem, NFS clients name files and directories using file handles.

To the server a file handle is a structured name-containing a file system ident$er, an
inode number, and a generation number-which i t uses to locate the file. The file system
identifier allows the server to identify the file system responsible for the file. The inode
number (see page 2-55) allows the identified file system to locate the file on the disk.

The file handle includes a generation number to detect that a program on a client 1
deletes a file and creates a new one while another program on a client 2 already has opened
the original file. If the server should happen to reuse the inode of the old file for the new file,
remote procedure calls of client 2 will get the new file, the one created by client 1, instead of
the old file. If the two programs where running on the same computer and sharing a local
UNIX file system, program 2 would read the old file. The generation number allows NFS to

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4-41 Appendix 4-B. Case study of the Network File System (NFS)

detect this case. When the server reuses an inode, it increases the generation number by one.
In the example, client 1 and client 2 would have different file handles, and client 2 will use
the old handle. NFS does not provide identical semantics to a local UNIX file system, though,
because that would require that the server knew which files are in use; instead, when client
2 uses the file handle it will receive a new error message: "stale file handle".

File handles are usable names across server failures, so that even if the server computer
fails between a client program opening a file and then reading from the file, the server can
identify the file using the information in the file handle. Making file handles usable across
server failures requires small changes to the server's on-disk file system: the NFS designers
modified the super block to record the file system identifier and inodes to record the
generation number for the inode.

2. The NFS remote procedure calls

Table 4-1 shows the remote procedure calls used by NFS. The remote procedure calls
are best explained by using an example. Suppose we have the following fragment of a user
program:

fd = OPEN ("f',READONLY);
READ Ifd, bu5 n);

Figure 4-10 shows the corresponding timing diagram where "f" is a remote file. The
NFS client implements each file system operation using one or remote procedure calls.

In response to the program's call to OPEN, the NFS client sends the following remote
procedure call to the server:

LOOKUP (dirfi ,"f ')

From before the program runs, the client has a file handle for the current working directory's
(dir f i) .It obtained this handle as a result of a previous lookup or as a result of mounting the
remote file system.

On receiving the LOOKUP request, the NFS server extracts the file system identifier from
dirfi , and asks the identified file system to look up the inode for dirfi. The identified file
system uses the inode number in dirfi to locate the directory's inode. Now the NFS server
searches the directory for the inode for "f". If present, the server creates a handle for the "f".
The handle contains the file system identifier of the local file system, the inode number for
"f", and the generation number stored in "f"'s inode. The NFS server sends this file handle to
the client.

On receiving the response, the client allocates the first unused entry in the program's
file descriptor table, stores a reference to f's file handle in that entry, and returns the index
for the entry ifd) to the user program.

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4 4 2 Enforcing Modularity with Clients and Services

,
Table 4-1: NFS remote procedure calls

I
1
1
1
1
1
1
1

Remote procedure call

NULL 0
LOOKUP (dirfll, name)

CREATE (dirfll, name, attr)

REMOVE (dirfh, name)

CETATTR @)

SETATTR @, attr)

READ (fh, o f l e t , count)

1
1
1
1
1
1
1
1

Returns

Do nothing.

fh and file attributes

fh and file attributes

status

file attributes

file attributes

file attributes and data

1
1
1
1
I
1
1
1

WRITE (fh, offset, count, data) file attributes

RENAME (dirfh, name, tofh, toname) status

LINK (dirfh, name, tofll, toname) status

SYMLWK (dirfll, name,string) status

READLINK @) string

MKDIR (dirfh, name, attr) fh and file attributes

1
1

READDIR (d i f l . o f l e t . count)

RMDIR (dirfh, name)

STATFS @)

1
1

directory entries

file system information

status

1
1

Next, the program calls READ Ifd, buJ n).The client sends the following remote procedure
call to the NFS server:

READ Ifh,0,n)

Like with the directory file handle, the NFS server looks up the inode for@. Then, the server
reads the data and sends the data in a reply message to the client.

The NFS remote procedure calls are designed so that the server can be stateless, that is
the server doesn't need to maintain any other state than the on-disk files. NFS achieves this
property by making each remote procedure call contain all the information necessary to carry
out that request. The server does not maintain any state about past remote procedure calls
to process a new request. For example, the client must keep track of the file cursor (see page
2-47) and include it as an argument in the READ remote procedure call; the server doesn't. As
another example, the file handle contains all information to find the inode on the server, as
explained above.

Draft Version of January 25,2006 2:59 p m

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4-43Appendix 4-B. Case study of the Network File System (NFS)

/'
Client Server

OPEN ("f", 0);

LOOKUP (dm "p)

lookup "f"in
~hand file attributes directory dirjh

A
READ Ifd, bud n)

READ Ifh,0, n)

)read fromjh

data and file attributes
4

Figure 4-10: Example interaction between a NFS client and service

This stateless property simplifies recovery from server failures: a client can just repeat
a request until i t receives a reply. In fact, the client cannot tell the difference between a server
that failed and recovered, and a server that is slow. Because a client repeats a request until
i t receives a response, i t can happen that the server executes a request twice. That is, NFS
implements at-least-once semantics for remote procedure calls. Since many requests are
idempotent (e.g., LOOKUP, WRITE) that is not a problem, but for some i t is. For example, READ,
REMOVE is not idempotent: if the first request succeeds, then a retry will return an error saying
that the file doesn't exist.

The first implementation of NFS followed this design exactly and had surprising
behavior for users. Consider a user program that calls UNLINK on an existing file that is stored
on a remote file system. The NFS client would send a REMOVE remote procedure call and the
server would execute it, but it could happen that the network lost the reply. In that case, the
client would resend the REMOVE request, the server would execute the request again, and the
user program would receive an error saying that the file didn't exist!

Later implementations of NFS address minimize this surprising behavior by providing
at-most-once semantics for remote procedure calls. In these implementations, each remote
procedure call is tagged with a transaction number and the server maintains some "soft"
state, namely a reply cache. The reply cache is indexed by transaction identifier and records
the response for the transaction identifier. When the server receives a request, it looks up its
transaction identifier in the reply cache. If it is in the cache, i t returns the reply from the
cache, without re-executing the request. If i t is not in the cache, the server processes the
request.

The replay cache is soft state because making i t hard state is expensive. It would
require that the reply cache be stored on a disk and would require a disk write for each remote
procedure call to record the response. Because the reply cache is soft state, remote procedure
calls provide at-most-once semantics. If the server doesn't fail, aretry of a ~ ~ ~ o ~ ~ r e q u e s twill
receive the same response as the first attempt. If, however, the server fails between the first

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4 4 Enforcing Modularity with Clients and Services

user programs

file system calls I+-- userkernel interface

t vnode interface
local file system NFS client

Figure 4-11: Layers in the UNIX implementation

attempt and a retry, a request is executed twice. For the idempotent operations that is not a
problem, but for operations like REMOVE the second attempt may generate a different result
from the first attempt, if the server failed between the first and second attempt.

Although the stateless property of NFS simplifies recovery, i t makes i t impossible to
implement the UNIX file interface completely correctly, because the UNIX specification
requires maintaining state. Consider again the case where one program deletes a file that
another program has open. The UNIX specification is that the file exists until the second
program closes the file.

If the programs run on different clients, NFS cannot adhere to this specification,
because i t would require that the server keep state: i t would have to maintain a reference
count per file, which would be incremented by one on an OPEN and decremented by one on a
CLOSE,and persist across server failures. Instead, NFS just does the wrong thing: remote
procedure calls of a client can return an error "stale file handle", if a program on another
client deletes a file that the first client has open.

NFS does not implement the UNIX specification faithfully, because that simplifies the
design of NFS. NFS preserves most of the UNIX semantics and only in rarely encountered
situations may users see different behavior. In practice, these rare situations are not a serious
problem, and in return NFS gets by with simple recovery.

3. Extending the UNIXfile system to support NFS

To implement NFS as an extension of the UNIX file system while minimizing the
number of changes required to the UNIX file system, the NFS designers split the file system
program by introducing an interface that provides unodes, virtual nodes (see figure 4-11). A
vnode is a structure in volatile memory that abstracts whether a file or directory is
implemented by a local file system or a remote file system. This design allows many functions
in the file system call layer to be implemented in terms of vnodes, without having to worry
about whether a file or directory is local or remote.

When a file system call must perform an operation on a file (e.g., reading data), i t
invokes the corresponding procedure through the vnode interface. The vnode interface has

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

Appendix 4-B. Case study of the Network File System (NFS) 4-45

/' Client computer Server computer
user program 7

OPEN (name, Jags)

file system call layer

local NFS server
file

system LOOKUP (name) system
RPC stubs

Network I
I

Figure 4-12: NFS implementation in UNIX I
procedures for looking up a file name in the contents of a directory vnode, reading from a
vnode, writing to a vnode, closing a vnode, etc. The local file system and NFS support their
own implementation of these procedures.

By using the vnode interface, most of the code for file descriptor tables, current
directory, name lookup, etc. can be moved from the local file system module into the file
system call layer with minimal effort. For example, with a few changes the procedure
PATHNAME_TO_INODE from appendix 2-A can be modified to be PATHNAME_TO_VNODE and be
provided by the file system call layer.

To illustrate the vnode design, consider a user program that invokes OPEN for a file (see
figure 4-12). To open the file, the file system call layer invokes PATHNAME_TO_VNODE, passing
the vnode for the current working directory and the path name for the file as arguments.
PATHNAME_TO_VNODE will parse the path name, invoking LOOKUP in the vnode interface for
each component in the path name. If the directory is a local directory, LOOKUP invokes the
LOOKUP procedure implemented by the local file system to obtain a vnode for the path name
component. If the directory is a remote directory, LOOKUP invokes the LOOKUP procedure
implemented by the NFS client.

To implement LOOKUP, the NFS client invokes the LOOKUP remote procedure call on the
NFS server, passing as arguments the file handle of the directory and the path name's
component.

On receiving the lookup request, the NFS server breaks apart the file handle for the
directory and then invokes LOOKUP in the vnode interface, passing the path name's component
as argument. If the directory is implemented by the server's local file system, the vnode layer
invokes the procedure LOOKUP implemented by the server's local file system, passing the path
name's component as argument. The local file system looks up the name, and if present,
creates a vnode and returns the vnode to the NFS server. The NFS server sends a reply
containing the vnode's file handle and some metadata for the vnode to the NFS client.

On receiving the reply, the NFS client creates a vnode, which contains the file handle,
on the client computer and returns i t to the file system call layer on the client machine. When

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4 4 6 Enforcing Modularity with Clients and Services

the file system call layer has resolved the complete path name, i t returns a file descriptor for
the file to the user program.

To achieve usable performance, a typical NFS client maintains various caches. A client
stores the vnode for every open file so that the client knows the file handles for open files. A
client also caches recently-used vnodes, their attributes, recently-used blocks of those cached
vnodes, and the mapping from name to vnode. Caching reduces the latency of file system
operations on remote files, because for cached files a client can avoid the cost of remote
procedure calls. In addition, because clients make fewer remote procedure calls, a single
server can support more clients. If multiple clients cache the same file, however, the NFS
protocol must ensure readwrite coherence in some way.

4. Coherence

When programs share a local file in UNIX, the program calling READ observes the data
from the most recent WRITE, even if this WRITE was performed by another program. This
property is called readlwrite coherence (see page 2-11). If the programs are running on
different clients, caching complicates implementing these semantics correctly.

To illustrate the problem consider a user program on one computer that writes a block
of a file. The file system call layer on that computer performs the update to the block in the
cache, delaying the write to the server, just like the local UNIX file system delays a write to
disk. If soon later a program on another computer reads the file from the server, i t may not
observe the change made on the first computer, because that change may not have been
propagated to the server yet.

Providing readwrite coherence can be done a t different levels of granularity. One
option is to provide readwrite coherence for files. That is, if an application OPENS a file, WRITES,
and CLOSES the file on one client, and if later an application on a second client opens the same
file, then the second application will observe the results of the writes by the first application.
This option is called close-to-open coherence. Another option is to provide readwrite coherence
on the granularity of bytes of a file. That is, if two applications on different clients have the
same file open concurrently, then a READ of one observes the results of WRITES of the other.

Many NFS implementations choose to provide close-to-open coherence, because i t is
simpler to implement and good enough for many applications. Figure 4-13 illustrates
close-to-open semantics in more detail. If, as in case 1, a program on one client calls WRITE and
then CLOSE, and then, another client calls OPEN and READ, the NFS implementation will ensure
that the READ will include the results of the WRITES by the first client. But, as in case 2, if two
clients have the same file open, one client writes a block of the file, and then the other client
invokes READ, READ may return the data either from before or after the last WRITE; the NFS
implementation make no guarantees in that case.

NFS implementations provide close-to-open semantics as follows. When a user program
opens a file, the clients check with the server if the client has the most recent version of the
file in its cache. If so, the client uses the version in its cache. If not, it removes its version from
its cache. The client implements READ by returning the data from the cache, after fetching the
block from the server if it is not in the cache. The client implements WRITE by modifying its

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

Appendix 4-B. Case study of the Network File System (NFS) 	 4-47

f client I Client 2 	 Client 1 Client 2
Time

WRITE 	 WRITE

OPEN

CLOSEOPEN 1 	 I I

case 1: READ observes last WRITE case 2: READ may observe last WRITE or not

Figure 4-13: Two cases illustrating close-to-open coherence I'-. 	 1
I

local cached version, without incurring the overhead of remote procedure calls. When the user
program invokes CLOSE on the file, CLOSE will send any modifications to that file to the server
and wait until the server acknowledges that the modifications have been received.

This implementation is simple and provides decent performance. The client can
perform WRITES a t local memory speeds. By delaying sending the modified blocks until CLOSE,
the client absorbs modifications that are overwritten (e.g., the application writes the same
block multiple times) and aggregates writes to the same block (e.g., WRITES that modify
different parts of the block).

By providing close-to-open semantics, most user programs written for a local UNIX file
system will work correctly when their files are stored on NFS. For example, if a user edits a
program on his personal workstation but prefers to compile on a faster compute machine,
then NFS with close-to-open coherence works well, requiring no modifications to the editor
and the compiler. After the editor has written out the modified file, and the users starts the
compiler on the compute machine, the compiler will observe the edits.

On the other hand, certain programs will not work correctly using NFS
implementations that provide close-to-open coherence. For example, a database program
cannot store its database in a file over NFS, because, a s the second case in figure 4-13
illustrates, close-to-open semantics doesn't specify the semantics of when client execute
operations concurrently. If two clients run the database program, apply a transaction
concurrently, and then exit the database program, only the results of one of the transactions
may be visible. To make this even more clear, consider another scenario. Client 2 opens the
database file before client 1closes i t and client 3 opens the database file after client 1closes
it. If client 2 and 3 then read data from the file, client 2 may not see the data written by client
1while client 3 will see the data written by client 1.

To provide the correct semantics in this case requires more sophisticated protocols,
which NFS implementations don't provide, because databases often have their own
special-purpose solutions anyway, a s we discuss chapters 9 and 10. If the database program
doesn't provide a special-purpose solution, then tough luck, one cannot run it over NFS.

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

4 4 8 Enforcing Modularity with Clients and Services

5. NFS version 3 and beyond

NFS version 2 is still widely used, but is slowly being replaced by NFS version 3.
Version 3 addresses a number of limitations in version 2, but the extensions do not
significantly change the preceding description; for example, version 3 supports 64-bit
numbers for recording file sizes and adds an asynchronous write (i.e., the server may
acknowledge an asynchronous WRITE request as soon as it receives the request, before it has
written the data to disk).

NFS version 4 is a bigger change than version 3; in version 4 the server maintains some
state. Version 4 also protects against intruders who can snoop and modify network traffic
using techniques discussed in chapter 11. Furthermore, it provides a more efficient scheme
for providing close-to-open coherence, and works well across the Internet, where the client
and server may be connected using low-speed links.

The following references provide more details on NFS:

1. Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
"Design and implementation of the Sun Network File System", Proceedings of the
1985 Summer Usenix Technical Conference, June 1985, El Cerrito, CA, pages
119-130.

2. 	 Chet Juszezak, "Improving the performance and correctness of an NFS
server", Proceedings of the 1989 Winter Usenix Technical Conference, January
1989, Berkeley, CA, pages 53-63.

3. Brian Pawlowski, Chet Juszezak, Peter Staubach, Carl Smith, Diana, Lebel,
and David Hitz, "NFS Version 3 design and implementation", Proceedings of the
1990 Summer Usenix Technical Conference, June 1994, Boston, MA.

4. Brian Pawlowski, Spencer Shepler, Carl Beame, Brent Callaghan, Michael
Eisler, David Noveck, David Robinson, and Robert Turlow, "The NFS Version 4
protocol", Proceedings of 2nd International SANE Conference, May 2000,
Maastricht, The Netherlands.

Draft Version o f January 25,2006 2:59 pm

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month W].

(http://ocw.mit.edu/)

