
Appendix 4-B. Case study of the Network File System (NFS) 

The network file system (NFS), designed by Sun Microsystems, Inc. in  the 1980s, is a 
clientlservice application that provides shared file storage for clients across a network. An 
NFS client grafts a remote file system onto the client's local file system name space and makes 
i t  behave like a local UNIX file system (see appendix 2-A). Multiple clients can mount the 
same remote file system so that users can share files. 

The need for NFS arose because of technology improvements. Before the 1980s 
computers were so expensive that each one had to be shared among multiple users and each 
computer had a single file system. But a benefit of the economic pressure was it allowed for 
easy collaboration, because users could share files easily. In the early 1980s, i t  became 
economically feasible to build workstations, which allowed each engineer to have a private 
computer. But, users desired to still have a shared file system for ease of collaboration. NFS 
provides exactly that: i t  allows a user a t  any workstation to use files stored on a shared server, 
a powerful workstation with local disks but often without a graphical display. 

NFS also simplifies the management of a collection of workstations. Without NFS, a 
system administrator must manage each workstation and, for example, arrange for backups 
of each workstation's local disk. NFS allows for centralized management; for example, a 
system administrator needs to back up only the disks of the server to archive the file system. 
In the 1980s, the setup had also a cost benefit: NFS allowed organizations to buy workstations 
without disks, saving the cost of a disk interface on every workstation and, a t  the time, the 
cost of unused disk space on each workstation. 

The design of NFS had four major goals. It should work with existing applications, 
which means NFS ideally should provide the same semantics a s  a local UNIX file system. 
NFS should be deployable easily, which means its implementation should be able to retrofit 
into existing UNIX systems. The client should be implementable in  other operating systems 
such as  Microsoft's DOS, so that a user on a personal computer can have access to the files on 
a n  NFS server; this goal implies that the client design cannot be too UNIX-specific. Finally, 
NFS should be efficient enough to be tolerable to users, but it doesn't have to provide as  high 
performance as  local file systems. NFS only partially achieves these goals. 

This appendix describes version 2 of NFS. Version 1was never deployed outside of Sun 
Microsystems, while version 2 has been in use since 1987. The appendix concludes with a brief 
summary of the changes in  version 3 (1990s) and 4 (early 2000s), which address weaknesses 
in  version 2. 

1. Naming remote files and directories 

To programs, NFS appears a s  a UNIX file system providing the file interface presented 
in  appendix 2-A. User programs can name remote files in the same way as  local files. When 
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a user program invokes, say, OPEN ("luserslsmith/.profile", READONLY),it cannot tell from the 
path name whether "users" or "smith are local or remote directories. 

To make naming remote file transparent to users and their programs, the client must 
mount the root directory of a remote file system on the local name space. NFS performs this 
operation by using a separate program, called the mounter. This program serves a similar 
function as the MOUNT call (see page 2-62); i t  grafts the remote file system- named by 
hostpath, where host is a DNS name andpath a path name-onto the local file name space. The 
mounter sends a remote procedure call to the file server host and asks for a file handle, a 
32-byte name, for the inode ofpath. On receiving the reply, the client marks the mount point 
in the local file system as a remote file system. It also remembers the file handle for path and 
the network address for the server. 

NFS doesn't use path names to name files and directories internally, but instead uses 
file handles. To the client a file handle is a 32-byte opaque name that identifies an inode on a 
remote server. A client obtains file handles from the server when the client mounts a remote 
file system or it looks up a file in a directory on the server. In all subsequent remote 
procedures calls to the server for that file, the client includes the file handle. 

One might wonder why the NFS designers chose to use file handles to name files and 
directories instead of path names. To see why consider the following scenario with two user 
programs running on different clients: 

Program 1 on client 1 Program 2 on client 2 

I 
I 

CHDIR ("dirl"); Time 
fd = OPEN ("f',READONLY); 

RENAME ("dirl", "dir2"); 
RENAME ("dir3", "dirl"); 

READ Ifd, buf, n); 

When program 1invokes READ, does the program read data from "dirllf", or "dir2lf"? If the 
two programs where running on the same computer and sharing a local UNIX file system, 
program 1would read "dir2lf", according to the UNIX specification. The goal is that NFS 
should provide the same behavior. Unfortunately, if the NFS client were to use path names, 
then the READ call would result in a remote procedure for the file "dirllf". To avoid this 
problem, NFS clients name files and directories using file handles. 

To the server a file handle is a structured name-containing a file system ident$er, an 
inode number, and a generation number-which i t  uses to locate the file. The file system 
identifier allows the server to identify the file system responsible for the file. The inode 
number (see page 2-55) allows the identified file system to locate the file on the disk. 

The file handle includes a generation number to detect that a program on a client 1 
deletes a file and creates a new one while another program on a client 2 already has opened 
the original file. If the server should happen to reuse the inode of the old file for the new file, 
remote procedure calls of client 2 will get the new file, the one created by client 1, instead of 
the old file. If the two programs where running on the same computer and sharing a local 
UNIX file system, program 2 would read the old file. The generation number allows NFS to 
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detect this case. When the server reuses an inode, it increases the generation number by one. 
In the example, client 1 and client 2 would have different file handles, and client 2 will use 
the old handle. NFS does not provide identical semantics to a local UNIX file system, though, 
because that would require that the server knew which files are in use; instead, when client 
2 uses the file handle it will receive a new error message: "stale file handle". 

File handles are usable names across server failures, so that even if the server computer 
fails between a client program opening a file and then reading from the file, the server can 
identify the file using the information in the file handle. Making file handles usable across 
server failures requires small changes to the server's on-disk file system: the NFS designers 
modified the super block to record the file system identifier and inodes to record the 
generation number for the inode. 

2. The NFS remote procedure calls 

Table 4-1 shows the remote procedure calls used by NFS. The remote procedure calls 
are best explained by using an example. Suppose we have the following fragment of a user 
program: 

fd = OPEN ("f',READONLY); 
READ Ifd, bu5 n); 

Figure 4-10 shows the corresponding timing diagram where "f" is a remote file. The 
NFS client implements each file system operation using one or remote procedure calls. 

In response to the program's call to OPEN, the NFS client sends the following remote 
procedure call to the server: 

LOOKUP (dirfi ,"f ') 

From before the program runs, the client has a file handle for the current working directory's 
(dir f i ) .It obtained this handle as a result of a previous lookup or as a result of mounting the 
remote file system. 

On receiving the LOOKUP request, the NFS server extracts the file system identifier from 
dirfi ,  and asks the identified file system to look up the inode for dirfi. The identified file 
system uses the inode number in dirfi to locate the directory's inode. Now the NFS server 
searches the directory for the inode for "f". If present, the server creates a handle for the "f". 
The handle contains the file system identifier of the local file system, the inode number for 
"f", and the generation number stored in "f"'s inode. The NFS server sends this file handle to 
the client. 

On receiving the response, the client allocates the first unused entry in the program's 
file descriptor table, stores a reference to f's file handle in that entry, and returns the index 
for the entry ifd) to the user program. 
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, 
Table 4-1: NFS remote procedure calls 

I 
1 
1 
1 
1 
1 
1 
1 

Remote procedure call 

NULL 0 
LOOKUP (dirfll, name) 

CREATE (dirfll, name, attr) 

REMOVE (dirfh, name) 

CETATTR @) 

SETATTR @, attr) 

READ (fh, o f l e t ,  count) 

1 
1 
1 
1 
1 
1 
1 
1 

Returns 

Do nothing. 

fh and file attributes 

fh and file attributes 

status 

file attributes 

file attributes 

file attributes and data 

1 
1 
1 
1 
I 
1 
1 
1 

WRITE (fh, offset, count, data) file attributes 

RENAME (dirfh, name, tofh, toname) status 

LINK (dirfh, name, tofll, toname) status 

SYMLWK (dirfll, name,string) status 

READLINK @) string 

MKDIR (dirfh, name, attr) fh and file attributes 

1 
1 

READDIR ( d i f l .  o f l e t .  count) 

RMDIR (dirfh, name) 

STATFS @) 

1 
1 

directory entries 

file system information 

status 

1 
1 

Next, the program calls READ Ifd, buJ n).The client sends the following remote procedure 
call to the NFS server: 

READ Ifh,0,n) 

Like with the directory file handle, the NFS server looks up the inode for@. Then, the server 
reads the data and sends the data in a reply message to the client. 

The NFS remote procedure calls are designed so that the server can be stateless, that is 
the server doesn't need to maintain any other state than the on-disk files. NFS achieves this 
property by making each remote procedure call contain all the information necessary to carry 
out that request. The server does not maintain any state about past remote procedure calls 
to process a new request. For example, the client must keep track of the file cursor (see page 
2-47) and include it as an argument in the READ remote procedure call; the server doesn't. As 
another example, the file handle contains all information to find the inode on the server, as 
explained above. 
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/' 
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OPEN ("f", 0); 
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data and file attributes 
4 

Figure 4-10: Example interaction between a NFS client and service 

This stateless property simplifies recovery from server failures: a client can just repeat 
a request until i t  receives a reply. In fact, the client cannot tell the difference between a server 
that failed and recovered, and a server that is slow. Because a client repeats a request until 
i t  receives a response, i t  can happen that the server executes a request twice. That is, NFS 
implements at-least-once semantics for remote procedure calls. Since many requests are 
idempotent (e.g., LOOKUP, WRITE) that is not a problem, but for some i t  is. For example, READ, 
REMOVE is not idempotent: if the first request succeeds, then a retry will return an error saying 
that the file doesn't exist. 

The first implementation of NFS followed this design exactly and had surprising 
behavior for users. Consider a user program that calls UNLINK on an existing file that is stored 
on a remote file system. The NFS client would send a REMOVE remote procedure call and the 
server would execute it, but it could happen that the network lost the reply. In that case, the 
client would resend the REMOVE request, the server would execute the request again, and the 
user program would receive an error saying that the file didn't exist! 

Later implementations of NFS address minimize this surprising behavior by providing 
at-most-once semantics for remote procedure calls. In these implementations, each remote 
procedure call is tagged with a transaction number and the server maintains some "soft" 
state, namely a reply cache. The reply cache is indexed by transaction identifier and records 
the response for the transaction identifier. When the server receives a request, it looks up its 
transaction identifier in the reply cache. If it is in the cache, i t  returns the reply from the 
cache, without re-executing the request. If i t  is not in the cache, the server processes the 
request. 

The replay cache is soft state because making i t  hard state is expensive. It would 
require that the reply cache be stored on a disk and would require a disk write for each remote 
procedure call to record the response. Because the reply cache is soft state, remote procedure 
calls provide at-most-once semantics. If the server doesn't fail, aretry of a ~ ~ ~ o ~ ~ r e q u e s twill 
receive the same response as  the first attempt. If, however, the server fails between the first 
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user programs 

file system calls I+-- userkernel interface 

t vnode interface 
local file system NFS client 

Figure 4-11: Layers in the UNIX implementation 

attempt and a retry, a request is executed twice. For the idempotent operations that is not a 
problem, but for operations like REMOVE the second attempt may generate a different result 
from the first attempt, if the server failed between the first and second attempt. 

Although the stateless property of NFS simplifies recovery, i t  makes i t  impossible to 
implement the UNIX file interface completely correctly, because the UNIX specification 
requires maintaining state. Consider again the case where one program deletes a file that 
another program has open. The UNIX specification is that the file exists until the second 
program closes the file. 

If the programs run on different clients, NFS cannot adhere to this specification, 
because i t  would require that the server keep state: i t  would have to maintain a reference 
count per file, which would be incremented by one on an  OPEN and decremented by one on a 
CLOSE,and persist across server failures. Instead, NFS just does the wrong thing: remote 
procedure calls of a client can return an  error "stale file handle", if a program on another 
client deletes a file that the first client has open. 

NFS does not implement the UNIX specification faithfully, because that simplifies the 
design of NFS. NFS preserves most of the UNIX semantics and only in rarely encountered 
situations may users see different behavior. In practice, these rare situations are not a serious 
problem, and in return NFS gets by with simple recovery. 

3. Extending the UNIXfile system to support NFS 

To implement NFS as  an  extension of the UNIX file system while minimizing the 
number of changes required to the UNIX file system, the NFS designers split the file system 
program by introducing an  interface that provides unodes, virtual nodes (see figure 4-11). A 
vnode is a structure in volatile memory that abstracts whether a file or directory is 
implemented by a local file system or a remote file system. This design allows many functions 
in the file system call layer to be implemented in terms of vnodes, without having to worry 
about whether a file or directory is local or remote. 

When a file system call must perform an  operation on a file (e.g., reading data), i t  
invokes the corresponding procedure through the vnode interface. The vnode interface has 
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/' Client computer Server computer 
user program 7 
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file system call layer 
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I 

Figure 4-12: NFS implementation in UNIX I 
procedures for looking up a file name in the contents of a directory vnode, reading from a 
vnode, writing to a vnode, closing a vnode, etc. The local file system and NFS support their 
own implementation of these procedures. 

By using the vnode interface, most of the code for file descriptor tables, current 
directory, name lookup, etc. can be moved from the local file system module into the file 
system call layer with minimal effort. For example, with a few changes the procedure 
PATHNAME_TO_INODE from appendix 2-A can be modified to be PATHNAME_TO_VNODE and be 
provided by the file system call layer. 

To illustrate the vnode design, consider a user program that invokes OPEN for a file (see 
figure 4-12). To open the file, the file system call layer invokes PATHNAME_TO_VNODE, passing 
the vnode for the current working directory and the path name for the file as arguments. 
PATHNAME_TO_VNODE will parse the path name, invoking LOOKUP in the vnode interface for 
each component in the path name. If the directory is a local directory, LOOKUP invokes the 
LOOKUP procedure implemented by the local file system to obtain a vnode for the path name 
component. If the directory is a remote directory, LOOKUP invokes the LOOKUP procedure 
implemented by the NFS client. 

To implement LOOKUP, the NFS client invokes the LOOKUP remote procedure call on the 
NFS server, passing as arguments the file handle of the directory and the path name's 
component. 

On receiving the lookup request, the NFS server breaks apart the file handle for the 
directory and then invokes LOOKUP in the vnode interface, passing the path name's component 
as argument. If the directory is implemented by the server's local file system, the vnode layer 
invokes the procedure LOOKUP implemented by the server's local file system, passing the path 
name's component as argument. The local file system looks up the name, and if present, 
creates a vnode and returns the vnode to the NFS server. The NFS server sends a reply 
containing the vnode's file handle and some metadata for the vnode to the NFS client. 

On receiving the reply, the NFS client creates a vnode, which contains the file handle, 
on the client computer and returns i t  to the file system call layer on the client machine. When 
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the file system call layer has resolved the complete path name, i t  returns a file descriptor for 
the file to the user program. 

To achieve usable performance, a typical NFS client maintains various caches. A client 
stores the vnode for every open file so that the client knows the file handles for open files. A 
client also caches recently-used vnodes, their attributes, recently-used blocks of those cached 
vnodes, and the mapping from name to vnode. Caching reduces the latency of file system 
operations on remote files, because for cached files a client can avoid the cost of remote 
procedure calls. In addition, because clients make fewer remote procedure calls, a single 
server can support more clients. If multiple clients cache the same file, however, the NFS 
protocol must ensure readwrite coherence in some way. 

4. Coherence 

When programs share a local file in UNIX, the program calling READ observes the data 
from the most recent WRITE, even if this WRITE was performed by another program. This 
property is called readlwrite coherence (see page 2-11). If the programs are running on 
different clients, caching complicates implementing these semantics correctly. 

To illustrate the problem consider a user program on one computer that writes a block 
of a file. The file system call layer on that computer performs the update to the block in the 
cache, delaying the write to the server, just like the local UNIX file system delays a write to 
disk. If soon later a program on another computer reads the file from the server, i t  may not 
observe the change made on the first computer, because that change may not have been 
propagated to the server yet. 

Providing readwrite coherence can be done a t  different levels of granularity. One 
option is to provide readwrite coherence for files. That is, if an  application OPENS a file, WRITES, 
and CLOSES the file on one client, and if later an  application on a second client opens the same 
file, then the second application will observe the results of the writes by the first application. 
This option is called close-to-open coherence. Another option is to provide readwrite coherence 
on the granularity of bytes of a file. That is, if two applications on different clients have the 
same file open concurrently, then a READ of one observes the results of WRITES of the other. 

Many NFS implementations choose to provide close-to-open coherence, because i t  is 
simpler to implement and good enough for many applications. Figure 4-13 illustrates 
close-to-open semantics in more detail. If, as  in case 1, a program on one client calls WRITE and 
then CLOSE, and then, another client calls OPEN and READ, the NFS implementation will ensure 
that the READ will include the results of the WRITES by the first client. But, as  in case 2, if two 
clients have the same file open, one client writes a block of the file, and then the other client 
invokes READ, READ may return the data either from before or after the last WRITE; the NFS 
implementation make no guarantees in that case. 

NFS implementations provide close-to-open semantics as  follows. When a user program 
opens a file, the clients check with the server if the client has the most recent version of the 
file in its cache. If so, the client uses the version in its cache. If not, it removes its version from 
its cache. The client implements READ by returning the data from the cache, after fetching the 
block from the server if it is not in the cache. The client implements WRITE by modifying its 
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f client I Client 2 	 Client 1 Client 2 
Time 

WRITE 	 WRITE 

OPEN 


CLOSEOPEN 1 	 I I 


case 1: READ observes last WRITE case 2: READ may observe last WRITE or not 

Figure 4-13: Two cases illustrating close-to-open coherence I'-. 	 1 
I 

local cached version, without incurring the overhead of remote procedure calls. When the user 
program invokes CLOSE on the file, CLOSE will send any modifications to that file to the server 
and wait until the server acknowledges that the modifications have been received. 

This implementation is  simple and provides decent performance. The client can 
perform WRITES a t  local memory speeds. By delaying sending the modified blocks until CLOSE, 
the client absorbs modifications that are overwritten (e.g., the application writes the same 
block multiple times) and aggregates writes to the same block (e.g., WRITES that modify 
different parts of the block). 

By providing close-to-open semantics, most user programs written for a local UNIX file 
system will work correctly when their files are stored on NFS. For example, if a user edits a 
program on his personal workstation but prefers to compile on a faster compute machine, 
then NFS with close-to-open coherence works well, requiring no modifications to the editor 
and the compiler. After the editor has written out the modified file, and the users starts the 
compiler on the compute machine, the compiler will observe the edits. 

On the other hand, certain programs will not work correctly using NFS 
implementations that provide close-to-open coherence. For example, a database program 
cannot store its database in a file over NFS, because, a s  the second case in figure 4-13 
illustrates, close-to-open semantics doesn't specify the semantics of when client execute 
operations concurrently. If two clients run  the database program, apply a transaction 
concurrently, and then exit the database program, only the results of one of the transactions 
may be visible. To make this even more clear, consider another scenario. Client 2 opens the 
database file before client 1closes i t  and client 3 opens the database file after client 1closes 
it. If client 2 and 3 then read data from the file, client 2 may not see the data written by client 
1while client 3 will see the data written by client 1. 

To provide the correct semantics in  this case requires more sophisticated protocols, 
which NFS implementations don't provide, because databases often have their own 
special-purpose solutions anyway, a s  we discuss chapters 9 and 10. If the database program 
doesn't provide a special-purpose solution, then tough luck, one cannot run it over NFS. 
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5. NFS version 3 and beyond 

NFS version 2 is still widely used, but is slowly being replaced by NFS version 3. 
Version 3 addresses a number of limitations in version 2, but the extensions do not 
significantly change the preceding description; for example, version 3 supports 64-bit 
numbers for recording file sizes and adds an asynchronous write (i.e., the server may 
acknowledge an asynchronous WRITE request as soon as it receives the request, before it has 
written the data to disk). 

NFS version 4 is a bigger change than version 3; in version 4 the server maintains some 
state. Version 4 also protects against intruders who can snoop and modify network traffic 
using techniques discussed in chapter 11. Furthermore, it provides a more efficient scheme 
for providing close-to-open coherence, and works well across the Internet, where the client 
and server may be connected using low-speed links. 
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