
1

Lecture 13 • 1

6.825 Techniques in Artificial Intelligence

Planning Miscellany

• SATPlan
• Conditional Planning

Today we’re going to cover a couple of left-over topics in planning, before we shift
gears entirely into probability.

We’ll start by looking at SAT Plan, which is a way of solving planning problems
using a SAT solver.

Then we’ll look at some strategies for handling uncertainty in planning, without
moving all the way to probability.

2

Lecture 13 • 2

SATPLAN

Very soon after Graphplan was developed, it was found to be quite successful. But
at the same time, the randomized algorithms for satisfiability started to be
working in other contexts, and so people said, "Hey! Well, if we can do this
WalkSAT stuff for satisfiability problems in general, then maybe we could take
these planning problems and make them into satisfiability problems. That idea
leads to a method for planning called SATPlan.

3

Lecture 13 • 3

SATPLAN

• One approach: Extract SAT problem from planning
graph

There's one way to convert a planning problem into a satisfiability problem that
works by doing the GraphPlan stuff first. It makes the plan graph, and then
extracts a satisfiability problem from the graph and tries to solve it. This
approach is well described in the Weld paper.

4

Lecture 13 • 4

SATPLAN

• One approach: Extract SAT problem from planning
graph

• Another approach:

I'm going to talk for the remaining time today about a somewhat more direct way
of describing a planning problem as a SAT problem. This is, again, an
algorithm that only a computer could love; it’s not very intuitive for humans,
but it does seem to work pretty well.

5

Lecture 13 • 5

SATPLAN

• One approach: Extract SAT problem from planning
graph

• Another approach: Make a sentence for depth n,
that has a satisfying assignment iff a plan exists at
depth n

We’ll pursue the same general methodology of considering increasing plan lengths.
We’ll try to use SAT to find a plan at a given length. If we do, great. If not,
we'll increase the horizon and solve it again. We’re going to make a particular
SAT instance, a sentence that has a satisfying assignment if and only if there is
a depth N plan to achieve the goal. And so then if you run a SAT solver on it,
you get back a satisfying assignment (if there is one). The assignment will
encode in it exactly which actions to take. And then if there is no satisfying
assignment, that's a proof that there is no depth N plan.

6

Lecture 13 • 6

SATPLAN

• One approach: Extract SAT problem from planning
graph

• Another approach: Make a sentence for depth n,
that has a satisfying assignment iff a plan exists at
depth n

• Variables:
–Every proposition at every even depth index:

clean0, garb2

–Every action at every odd depth index: cook1

We’ll keep the indexing idea from GraphPlan, so we're going to have a variable for
every proposition at every even step (time index). So we'll have variables like
clean at zero or garbage at two. That means my hands are clean at step zero or
there's garbage still in the kitchen at step two. So we have a variable for every
proposition at every even time index, and we'll have a variable for every action
at every odd time index.

7

Lecture 13 • 7

SATPLAN

• One approach: Extract SAT problem from planning
graph

• Another approach: Make a sentence for depth n,
that has a satisfying assignment iff a plan exists at
depth n

• Variables:
–Every proposition at every even depth index:

clean0, garb2

–Every action at every odd depth index: cook1

This is exactly an instance of reducing your current problem to the previous one. I
argued before that reducing planning to first-order logic and theorem proving
wasn't such a good idea, because it’s computationally horrendous. It turns out
that reducing planning to satisfiability isn't so bad. You get really big SAT
problems but at least there's a fairly effective algorithmic crank that you can turn
to try to solve the satisfiability problem.

8

Lecture 13 • 8

Constructing SATPLAN sentence

Remember that a satisfiability problem is a conjunction of propositional clauses. So
somehow we have to turn this planning problem into a conjunction of clauses
such that if there is a satisfying assignment, then there's a plan. We’ll come up
with a bunch of different kinds of clauses that we have to add to the satisfiability
sentence in order to encode the whole planning problem. You can think of each
clause, as before, as representing a constraint on the ultimate solution.

9

Lecture 13 • 9

Constructing SATPLAN sentence

• Initial sentence (clauses): garb0, clean0, quiet0

OK, so first, we have the initial sentence. So we're going to have one clause that
says - - we'll do it by example -- garbage at zero and another that says clean at
zero and another that says quiet at zero. Those are three things we know for
sure. So we'll throw those clauses into our sentence.

10

Lecture 13 • 10

Constructing SATPLAN sentence
• Initial sentence (clauses): garb0, clean0, quiet0, ¬present0, ¬dinner0

Now, there's a further wrinkle here. In GraphPlan we were able to be sort of
agnostic about the truth values of the things that weren't mentioned, right? So
when we talked about what was true in the initial state, we just put down the
things that were known to be true and we were OK with saying that we didn’t
know the truth values of everything else. Graphplan would come up with a plan
that would work for any assignment of values to the unmentioned initial
variables.

In SATPlan, we're going to have one variable for every single proposition at every
single time step and we actually have to be committed about whether they're
true or false. They can't just float around. So when we talk about the initial
state, we're going to specify the whole initial state. We have to say that,
initially present and dinner are false. If not, then it will be possible to come up
with a plan that says those things were true initially and all we have to do is
maintain them.

11

Lecture 13 • 11

Constructing SATPLAN sentence
• Initial sentence (clauses): garb0, clean0, quiet0, ¬present0, ¬dinner0

• Goal (at depth 4): ¬garb4, present4, dinner4

Now we need a sentence that expresses our goal. Let's say we're going to look for a
depth two plan. Then our goal would be that there is no garbage in step four,
and that there's a present in step four and there's dinner at step four. So that
nails down the initial and the final conditions of our planning problem.

12

Lecture 13 • 12

Constructing SATPLAN sentence
• Initial sentence (clauses): garb0, clean0, quiet0, ¬present0, ¬dinner0

• Goal (at depth 4): ¬garb4, present4, dinner4

• Actiont → (Pret-1 Æ Efft+1) [in clause form]
• Cook1 → (clean0 Æ dinner2)

Now we need to capture the information from the operator descriptions. You can
think of it as a set of clauses, a set of constraints, that describe how the actions
and their preconditions and their effects work. So we'll have a set of axioms
that are of the form: an action at time T implies its preconditions at T-1 and its
effects at T+1. So let’s think about the cook action. Doing cook at time step
one implies clean at zero and dinner at two. If you're going to say that we're
cooking in time step one, then you had better also say that you're clean at step
zero and there's dinner at step two. It’s easy enough to turn that into clausal
form.

For every possible action and every odd time step, you throw in one of these
axioms. That's exactly like drawing the arcs between the actions and their
preconditions and their effects, just hooking things up.

13

Lecture 13 • 13

Constructing SATPLAN sentence
• Initial sentence (clauses): garb0, clean0, quiet0, ¬present0, ¬dinner0

• Goal (at depth 4): ¬garb4, present4, dinner4

• Actiont → (Pret-1 Æ Efft+1) [in clause form]
• Cook1 → (clean0 Æ dinner2)

• Explanatory Frame Axioms: For every state change, say what could
have caused it

• garb1 Æ ¬ garb3 → (dolly2 v carry2) [in clause form]

Now we need frame axioms, and just going to talk about explanatory frame
axioms, since they work out nicely. There are a number of other approaches
described in the paper. Frame axioms say that if I haven't said that something
changes then it doesn't, or they say explicitly if I paint something it doesn't
move.

Explanatory frame axioms say, for every state change, what could possibly have
caused it. So for instance, if I have garbage at time one, and !garbage at time
three, then I either did a dolly at time two or a carry at time two. So, for every
possible initial time and for each proposition you say what it is that could have
caused the proposition to have changed truth values.

Now, you can do contrapositive reasoning. And SAT will do this in some sense
implicitly for you, because, remember that if we know P implies Q, we know
that !Q implies !P. Right? So for this axiom, you know that if you didn't do
dolly and you didn't do carry, then it can't be that the garbage variable switched
its sign. This is the only way that you could have done it. So if you didn't do
one of these things, then it didn't change, and so there's your frame axiom.

14

Lecture 13 • 14

Constructing SATPLAN sentence
• Initial sentence (clauses): garb0, clean0, quiet0, ¬present0, ¬dinner0

• Goal (at depth 4): ¬garb4, present4, dinner4

• Actiont → (Pret-1 Æ Efft+1) [in clause form]
• Cook1 → (clean0 Æ dinner2)

• Explanatory Frame Axioms: For every state change, say what could
have caused it

• garb1 Æ ¬ garb3 → (dolly2 v carry2) [in clause form]

• Conflict exclusion: For all conflicting actions a and b at depth t,
add ¬ at v ¬ bt

• One’s precondition is inconsistent with the other’s effect

There's one more set of axioms that we need to keep actions from conflicting,
called conflict exclusion axioms, and then we'll be ready to go. For all
conflicting actions A and B at step T we’ll add the clause !A at T or !B at T. So
what's a conflicting action? Two actions conflict if one's preconditions are
inconsistent with the other's effect. So if you have two actions and one's
preconditions are inconsistent with another one's effect, they can't happen at the
same time. It might look like they could happen exactly at the same time, but
it would not be the case that you could do either linearization. So we have the
same constraint that came up in GraphPlan.

15

Lecture 13 • 15

Constructing SATPLAN sentence
• Initial sentence (clauses): garb0, clean0, quiet0, ¬present0, ¬dinner0

• Goal (at depth 4): ¬garb4, present4, dinner4

• Actiont → (Pret-1 Æ Efft+1) [in clause form]
• Cook1 → (clean0 Æ dinner2)

• Explanatory Frame Axioms: For every state change, say what could
have caused it

• garb1 Æ ¬ garb3 → (dolly2 v carry2) [in clause form]

• Conflict exclusion: For all conflicting actions a and b at depth t,
add ¬ at v ¬ bt

• One’s precondition is inconsistent with the other’s effect

Now we know how to take a planning problem and make it into a big sentence.
You just take the conjunction of the unit clauses from the initial and goal
conditions, and the conjunction of all the axioms that hook the actions up to
their preconditions and effects and the conjunction of all the frame axioms and
the conjunctions of these conflict exclusion axioms, and you clausify it all, and
now you have a SAT sentence. You just feed it into DPLL or WalkSat and
poof, out comes your answer. If an answer doesn't come out, you do it again
for a bigger plan depth and eventually you'll get the answer out to your
planning problem.

16

Lecture 13 • 16

SATPLAN

• There are many preprocessing steps possible to
reduce the size of the SAT problem

It turns out that there's room to be very clever in the construction of your SAT
sentence. The method we just looked at is perhaps the most straightforward, but
it isn’t the most efficient to solve using SAT. You can be much cleverer, and
use a lot of preprocessing to shrink the size of the sentence.

17

Lecture 13 • 17

SATPLAN

• There are many preprocessing steps possible to
reduce the size of the SAT problem

• We can use insight of where sentence came from
to, for example, choose the order of the variables in
DPLL [pick action variables first, they cause
conflicts as soon as possible].

Also, if you're using DPLL, people have found that converting this to a DPLL
sentence and forgetting where it came from isn't as effective as noticing that
DPLL works by picking variables to assign in some order and it turns out that
you can be cleverer about choosing the order of the variables to assign by
knowing where they came from. So, in particular, the action variables are good
ones to assign first in DPLL, because those are the things that really will cause
the conflicts as quickly as possible. So you can use your insight about where
this sentence came from in order to search the space more effectively.

18

Lecture 13 • 18

SATPLAN

• There are many preprocessing steps possible to
reduce the size of the SAT problem

• We can use insight of where sentence came from
to, for example, choose the order of the variables in
DPLL [pick action variables first, they cause
conflicts as soon as possible].

• Recently, new methods that are closer to first order
have become more popular

Up until about maybe three years ago or so, GraphPlan and SATPlan were the best
things to use for hard planning problems, and they won all the planning contests.
Now, more recently, people have gone back to these methods that are a little
bit more first-orderish; they keep the structure of the original problem around
and take advantage of it. They also use search heuristics to great effect.

19

Lecture 13 • 19

Planning Assumptions

• Assumed complete and correct model of
world dynamics

• Assumed know initial state
• Assumed world is deterministic

• These assumptions hold in domains
such as scheduling machines in factories
but not in many other domains.

In all the planning methods we've looked at so far, we've assumed a couple things.
We've assumed that we know a complete and correct model of the world
dynamics, which is encoded in the operator descriptions. And we've assumed
that we know the initial state. And assumed that the world is deterministic.
That is to say, whenever the world is in some state and we take an action, then it
does whatever the operator description tells us it's going to do. So this is
related to knowing a complete and correct model. But not only is it a complete
and correct model, it's a deterministic model. Now, there are some kinds of
sort of formal domains for which these kinds of assumptions are true. So, for
instance, planning methods just like the ones we've been looking at have been
applied in real application domains for things like scheduling, where the
assumption is you're already working in an abstraction of a domain that satisfies
these assumptions and is close enough to right. But for all kinds of other
domains, these assumptions are completely untenable.

20

Lecture 13 • 20

Planning Assumptions

• Assumed complete and correct model of
world dynamics

• Assumed know initial state
• Assumed world is deterministic

• These assumptions hold in domains
such as scheduling machines in factories
but not in many other domains.

So, we’ll finish this lecture by talking about ways of addressing some of these
problems without moving directly yet to probabilistic representation. But it
will be a motivation for going to probability pretty soon.

21

Lecture 13 • 21

Planning Assumptions

• Assumed complete and correct model of
world dynamics

• Assumed know initial state
• Assumed world is deterministic

• These assumptions hold in domains
such as scheduling machines in factories
but not in many other domains.

learning

conditional
planning

replanning

The assumption of knowing a complete and correct model we'll address later on
when we study learning. So we're not going to get to this problem today. But
we can address, at least in a limited way, problem of not knowing the initial
state, and the assumption that the world is deterministic. We're going to look at
some conditional planning methods that are appropriate when you don't know
everything about the state of the world. And we're going to look at re-planning,
which is appropriate when the world is nondeterministic, when there can be
errors in the execution of the actions, but you are not prepared or interested in
modeling those errors in advance.

22

Lecture 13 • 22

Conditional Planning Example

Let’s consider the following example to motivate conditional planning. You want
to go to the airport and board your plane. But you don’t know, when you’re
making your plan, which gate your flight leaves from. However, you feel
confident that if you get to the airport lobby, you can read the display that will
tell you what gate your airplane is leaving from.

23

Lecture 13 • 23

Conditional Planning Example

EffectsPreconditionsAction

We can formalize this domain using simple operators, as follows. We’re assuming
that this is an incredibly small airport with only two gates. The variable Gate1
is true if your plane is leaving from gate 1; if your plane leaves from Gate 2,
then it’s false.

24

Lecture 13 • 24

Conditional Planning Example

KnowWhether(Gate1)AtLobbyReadGate

EffectsPreconditionsAction

The read gate action has the precondition that you’re at the lobby. And it has an
interesting effect. It doesn’t change the state of the world. It just changes the
knowledge state of the agent. As a result of doing this action, the agent knows
whether the variable Gate1 has value true or false; that is, the agent knows
whether its plane is leaving from gate1 or gate 2.

25

Lecture 13 • 25

Conditional Planning Example

OnPlane, ¬AtGate1Gate1, AtGate1BoardPlane1

KnowWhether(Gate1)AtLobbyReadGate

EffectsPreconditionsAction

The other actions are what you might expect. You can board plane 1 if you’re at
gate 1 and if your plane is leaving from that gate.

26

Lecture 13 • 26

Conditional Planning Example

OnPlane, ¬AtGate2¬Gate1, AtGate2BoardPlane2

OnPlane, ¬AtGate1Gate1, AtGate1BoardPlane1

KnowWhether(Gate1)AtLobbyReadGate

EffectsPreconditionsAction

The same thing is true for the board plane 2 action.

27

Lecture 13 • 27

Conditional Planning Example

OnPlane, ¬AtGate2¬Gate1, AtGate2BoardPlane2

AtLobby, ¬AtHomeAtHomeGotoLobby

OnPlane, ¬AtGate1Gate1, AtGate1BoardPlane1

KnowWhether(Gate1)AtLobbyReadGate

EffectsPreconditionsAction

If you’re at home, you can go to the lobby.

28

Lecture 13 • 28

Conditional Planning Example

AtGate2, ¬AtLobbyAtLobbyGotoGate2

AtGate1, ¬AtLobbyAtLobbyGotoGate1

OnPlane, ¬AtGate2¬Gate1, AtGate2BoardPlane2

AtLobby, ¬AtHomeAtHomeGotoLobby

OnPlane, ¬AtGate1Gate1, AtGate1BoardPlane1

KnowWhether(Gate1)AtLobbyReadGate

EffectsPreconditionsAction

And, if you’re at the lobby, you can go to either gate. Note that knowing where
your plane is leaving from isn’t a precondition for going to either gate. The
assumption here is that you can wander around in confusion among the gates all
you want; you just can’t board the wrong plane.

29

Lecture 13 • 29

Partial Order Conditional Plan

Now let’s look at how a conditional version of the POP algorithm might work. I’m
not going to go through the algorithm in complete detail; I’ll just sketch out an
example of how it might work in this airport domain.

30

Lecture 13 • 30

Partial Order Conditional Plan

start

Board 1

finish

Goto G1

athome

¬ atGate1

Gate1 atGate1

atlobby

¬ atlobby

onplane

athome

¬ athome

GoLobby
atlobby

Given the initial condition at-home and goal condition on-plane, it’s pretty easy to
make this much of the plan.

If you look carefully, you can see that all of the preconditions of all the actions are
satisfied, except for the “Gate1” precondition of the Board1 action. Now we
have a bit of a problem, because we don’t have any actions that can cause Gate1
to be true. You can’t in general influence the airport operations people to park
your airplane wherever you want it!

The only thing we can do about Gate1 is to take the ReadGate action, and find out
whether Gate1 is true. If we decide to add this step to our plan, then we have to
divide the plan up into two separate contexts, one in which Gate1 is true and one
in which it is false. And in future, when we check for conflicts, we only look
within a context. Because we know, ultimately, that we’ll only go down one
branch of the plan.

31

Lecture 13 • 31

Partial Order Conditional Plan

start

Board 1

GoLobby

finish

Goto G1Read Gate

athome

athome

¬ athome

Gate1

Gate1

¬ atGate1

Gate1 atGate1

atlobby atlobby

Gate1

¬ atlobby

onplane

false
true

Board 2

finish

Goto G2

¬ Gate1

¬ Gate1
¬ atGate2

¬Gate1atGate2

atlobby

¬ Gate1

¬ atlobby

onplane

atlobby

So, here’s a mostly worked-out plan that includes the read gate action, which
divides the plan into two branches. The context conditions (Gate1 and not
Gate1) are indicated in blue next to the relevant steps. It seems basically good,
but we still have to watch out for threats.

32

Lecture 13 • 32

Partial Order Conditional Plan

start

Board 1

GoLobby

finish

Goto G1Read Gate

athome

athome

¬ athome

Gate1

Gate1

¬ atGate1

Gate1 atGate1

atlobby atlobby

Gate1

¬ atlobby

onplane

false
true

Board 2

finish

Goto G2

¬ Gate1

¬ Gate1
¬ atGate2

¬Gate1atGate2

atlobby

¬ Gate1

¬ atlobby

onplane

atlobby

We have two threats to deal with, one in each context of the plan. Since the Read
Gate and Go Lobby actions are not in any context, they’re considered to be part
of both plans. And we can see the problem that GotoG1 or GotoG2 might
execute before ReadGate, which would cause the deletion of atLobby, which is
necessary for ReadGate to work.

33

Lecture 13 • 33

Partial Order Conditional Plan

start

Board 1

GoLobby

finish

Goto G1Read Gate

athome

athome

¬ athome

Gate1

Gate1

¬ atGate1

Gate1 atGate1

atlobby atlobby

Gate1

¬ atlobby

onplane

false
true

Board 2

finish

Goto G2

¬ Gate1

¬ Gate1
¬ atGate2

¬Gate1atGate2

atlobby

¬ Gate1

¬ atlobby

onplane

atlobby

So, we fix the problem by adding a couple of temporal constraints, and we’re done.

34

Lecture 13 • 34

Conditional Planning

• POP with these new ways of fixing threats and
satisfying preconditions increases the branching
factor in the planning search and makes POP
completely impractical

So, this is one way to do conditional planning. At some level it's not too hard to
talk about, but at another level it makes POP, which is already not the most
efficient planning method pretty much go out of control. So this is a case of
something that you can write down, and you can kind of make it work, but
adding these new ways of fixing threats and satisfying preconditions means that
the branching factor gets really big. Now we're basically at frontier of classical
planning research.

35

Lecture 13 • 35

Conditional Planning

• POP with these new ways of fixing threats and
satisfying preconditions increases the branching
factor in the planning search and makes POP
completely impractical

• People are working on conditional planning versions
of GraphPlan and SatPlan

Another fairly current research topic is the development of methods for making
GraphPlan and SatPlan build conditional plans. There are algorithms for this;
I’m not sure anyone really understands how practical they are yet.

36

Lecture 13 • 36

Conditional Planning

• POP with these new ways of fixing threats and
satisfying preconditions increases the branching
factor in the planning search and makes POP
completely impractical

• People are working on conditional planning versions
of GraphPlan and SatPlan

There are really two alternative stories that you could tell about what you do when
you go to the airport. One is that, sitting at home or in the car or in the taxi or
whatever, you make a conditional plan that says I'm going to go to the lobby,
I'm going to look at the board, if it tells me I have to go somewhere that I go to
by train then I'll go there by train and otherwise if it tells me to somewhere that
I need to go by foot I'll go by foot.

37

Lecture 13 • 37

Conditional Planning

• POP with these new ways of fixing threats and
satisfying preconditions increases the branching
factor in the planning search and makes POP
completely impractical

• People are working on conditional planning versions
of GraphPlan and SatPlan

• Instead of constructing conditional plans ahead of
time, just plan as necessary when you have the
information.

But that seems like a pretty unlikely story, right? All the time I go to airports
where I have no idea whether they're going to involve taking trains to gates or
not. Sometimes they do, sometimes they don't. So another story is that I
shouldn’t worry too much in advance; I should just plan later on, when I have
the information. Be a little more relaxed and plan on-line as the information
becomes apparent to you.

38

Lecture 13 • 38

Conditional Planning

• POP with these new ways of fixing threats and
satisfying preconditions increases the branching
factor in the planning search and makes POP
completely impractical

• People are working on conditional planning versions
of GraphPlan and SatPlan

• Instead of constructing conditional plans ahead of
time, just plan as necessary when you have the
information.

Now, that sort of approach doesn't suit NASA mission control. It doesn't suit people
who want to have a theorem at the very beginning that they're going to for sure
know exactly how to do what they're going to do. But for most of what we
need to do in life, there are too many conditions to do conditional planning,
and so a more relaxed approach often works better. So let's talk a little bit
about that.

39

Lecture 13 • 39

Replanning

There are (at least) two things that re-planning is good for.

40

Lecture 13 • 40

Replanning

• One place where
replanning can help
is to fill in the steps
in a very high-level
plan

One is this case that we just talked about, where we don't really know yet how to do
the thing that we're going to need to do. In that case, it's almost as if you can
make a plan at a very high level of abstraction. You say, well, I'm going to go
to the airport, and then I'm going to go to the gate, and then I'm going to do
some other stuff. And you can go to the airport with a plan at this level of
abstraction. So there's an idea that you might have a plan at a very high level of
abstraction, but the details of how to go to the gate you don't know.

41

Lecture 13 • 41

Replanning

• One place where
replanning can help
is to fill in the steps
in a very high-level
plan

Goto Airport Goto Gate

So, you’ll plan how to get to the airport, and you’ll start executing the plan. Once
you get to the airport, you’ll get more relevant information, and you’ll call your
planner again to figure out the rest of the plan (or maybe just another reasonable
initial prefix, like what to do until you get to your destination airport, where
you’ll probably have to do information gathering again).

42

Lecture 13 • 42

Replanning

• One place where
replanning can help
is to fill in the steps
in a very high-level
plan

• Another is to
overcome execution
errors

Goto Airport Goto Gate

Planner

Init state

Plan

Execute

Another useful situation for re- planning is not a case of not having information in
advance, but a case of having our model be not quite right, having execution
errors happen. It’s easy to think of a situation in which you make a plan from
your current state as the initial state. Then you start to execute the plan. If you
made a plan that said to do four steps, then you could just execute them “open
loop”, without looking at the world to see if things are going right.

43

Lecture 13 • 43

Replanning

Planner

Init state

Plan

Execute

World

actionsense

• One place where
replanning can help
is to fill in the steps
in a very high-level
plan

• Another is to
overcome execution
errors

Goto Airport Goto Gate

But it would be much more robust to execute them “closed loop”. When you were
making your plan, you knew what the desired effects were of each step. When
executing the plan, you can watch in the world to be sure that your actions are
really having their desired effects.

44

Lecture 13 • 44

Replanning

Planner

Init state

Plan

Execute

World

actionsense

¬ effe
ct

s

• One place where
replanning can help
is to fill in the steps
in a very high-level
plan

• Another is to
overcome execution
errors

Goto Airport Goto Gate

If you find that they’re not working correctly, you can stop executing what is now
probably a senseless sequence of actions and re-plan. You’d call your planner
again with the current, unpredicted, state as the initial state. Then you’d get a
new plan and start executing it, continuing to monitor the expected effects.

45

Lecture 13 • 45

Replanning

Planner

Init state

Plan

Execute

World

actionsense

¬ effe
ct

s

• One place where
replanning can help
is to fill in the steps
in a very high-level
plan

• Another is to
overcome execution
errors

Replanning Cycle

Goto Airport Goto Gate

That’s a moderately flexible way of dealing with the world messing up our plan. It
doesn't try to anticipate anything. It doesn't try to think about what could go
wrong and what to do if it did. It doesn't have a proof in its head that it can deal
with all the things that might go wrong. It just says I'm going to pretend that
the world is deterministic; I'm going to make a plan that's good. If it is, I'm
going to execute it; but I'm actually going to keep my eye out. I'm actually
going to pay attention to see if things start to go wrong; and if they do, I'll plan
again.

46

Lecture 13 • 46

Universal Plan

It might be that you're worried about computation time, that you're in a domain that
has so much time pressure that you're worried that if you stop and re-plan, the
bad guys will get you while you're thinking. Your race car will run into the
wall, or some kind of bad time-critical thing will happen. In that case you
might be worried about ever calling the planner because, as you know, these
algorithms aren't always quick. And so there's a danger that you call the
planner and it takes forever and there you are hung up and not knowing what to
do.

One way to handle this is with something called a “universal plan”.

47

Lecture 13 • 47

Universal Plan

Assume
• Offline computation is cheap
• Space is plentiful
• Online computation is expensive

You've heard in other contexts about the idea of a time-space tradeoff. The idea of
universal planning is at the opposite extreme from re-planning in the time-
space tradeoff spectrum. In universal planning the idea is that off-line
computation is cheap, that space is cheap and plentiful, and that on-line
computation is expensive. Now, so, if those three conditions hold for your
domain, then it might be worth thinking really hard in advance, really kind of
preparing yourself for everything that could happen, so that when you go out
there into the world you can just do it. You don't ever have to stop and think.

48

Lecture 13 • 48

Universal Plan

Assume
• Offline computation is cheap
• Space is plentiful
• Online computation is expensive

• Plan for every possible initial state
• Store: initial state → first step

At some level this idea is crazy, but it's worth talking about because it's the extreme
end of the spectrum, of which the intermediate points are interesting. So what
do you do? You plan for every possible initial state, and you store a mapping
from the initial state into the first action of the plan. You think really hard in
advance of ever taking any actions and you say, if the world is like this, then I
would have to do these ten actions in order to get to the goal. Now, you might
think you would have to store all ten of those actions, but you don't. You just
have to store the first one, because as long as you execute the first one, and
assuming that you can see what the world is like after that, then you just go
look the next state up in the table somewhere. Now, you could compute this
table by dynamic programming. It's not as horrible as it seems, and we'll
actually talk about doing something like this in the probabilistic case. I'm not
going to go through it in the deterministic case.

49

Lecture 13 • 49

Universal Plan

Assume
• Offline computation is cheap
• Space is plentiful
• Online computation is expensive

• Plan for every possible initial state
• Store: initial state → first step

• World is completely observable

There’s one more assumption here, which is that the world is completely
observable, meaning that we can really see what state the world is in. So, in
every time step we would take an action, look to see what state the world is in,
look it up in our table, do what action our table told us to do, see what state the
world is in, and so on. OK, so that's one extreme.

50

Lecture 13 • 50

Universal Plan

Assume
• Offline computation is cheap
• Space is plentiful
• Online computation is expensive

• Plan for every possible initial state
• Store: initial state → first step

• World is completely observable

The other extreme in some sense is replanning, where we don't store very much at
all. All we store is this one little plan, but we might find ourselves having to
think pretty hard on-line. I'm going to talk about one point that's in between
these two things, mostly because I think it's neat and because it gives us some
ideas about how to interpolate between these two approaches. In any
interesting-sized domain, universal planning is way too expensive. Off-line
computation can never be cheap enough, and space can never be plentiful
enough, in a big domain - in the domain of your life. Why is your brain not
simply a stored table of situations to actions? Well, the answer is that the table
would just be way, way, way, way too big. So sometimes you have to stop and
recompute.

51

Lecture 13 • 51

Triangle Tables
Fikes & Nilsson

So let's talk about an intermediate version, called a triangle table. These things
were actually invented by Fikes and Nilsson as part of the original Strips
planner. Shakey the robot really used Strips to figure out what to do, and
Shakey was an actual robot. The people who worked on it invented all kinds of
things that were really important and in many ways haven't been superseded.

52

Lecture 13 • 52

Triangle Tables
Fikes & Nilsson

Let's go back to the hardware store, drill, bananas, milk, supermarket example. I'm
just going to show you the triangle table, and explain how you might build one
and what you’d do with it once you had it. A triangle table is a data structure
that remembers the particular plan you made, but keeps some more information
about why those steps are in the plan. In some sense the plan graph from
GraphPlan encodes that information, as does the graph that you get from using
POP. But in the triangle table it makes very vividly clear an execution strategy
for the plan. We’re going to make a plan in the ordinary way, but then we're
going to develop an execution strategy that is a little bit more flexible and
robust than simply emitting the actions in order.

53

Lecture 13 • 53

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

A triangle table is a big table. It’s really the diagonal and lower triangle of a matrix.
Each row corresponds to one of the actions in the plan; the action is written at
the end of its row. Each row contains the preconditions of the action. Each
column contains the effects of the action above it.

So, for example, the At supermarket condition is a precondition of buy bananas, and
an effect of go supermarket; so it’s in the column beneath go supermarket, and
in the row associated with buy bananas. This is just another way of describing
the information in a plan graph. The first column contains the initial conditions.
And the bottom row contains the goal conditions.

54

Lecture 13 • 54

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

Now, the rule for executing a triangle table is that you should execute the highest
true kernel. A kernel is a rectangle that includes the lower left corner of the
table and some upper right corner (not including an action).

55

Lecture 13 • 55

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

Here is the highest kernel. It includes all of the preconditions of the last action, as
well as the other conditions that we’re depending on being maintained at this
point (like have drill). The idea is that if we somehow find ourselves in a
situation in which these three conditions are true, then we should execute the
buy bananas action, no matter what sequence of actions we’ve done before.

56

Lecture 13 • 56

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

If those conditions are not all satisfied, then we look for another true kernel. Here is
the next highest one.

57

Lecture 13 • 57

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

If we have the drill but we’re not at the supermarket, then we should go to the
supermarket.

58

Lecture 13 • 58

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

If we don’t have the drill yet, either, but we’re at the hardware store, we should buy
the drill.

59

Lecture 13 • 59

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

Failing that, as long as the initial conditions are true, then we should go to the
hardware store. If somehow even the initial conditions have become false, then
the execution of the triangle table fails and the planner is called to re-plan.

60

Lecture 13 • 60

Triangle Tables
Fikes & Nilsson

Have
Bananas

Have DrillGoal
Conds

Buy Ban
Eff(A4)

At SMSells(SM,
Bananas)

Pre(A4)

Go SM
Eff(A3)

At HWPre(A3)

Buy Drill
Eff(A2)

At HWPre(A2)

Go HW
Eff(A1)

Sells(HW,
Drill)

Pre(A1)

Init

Execute Highest True Kernel (rectangle including lower left corner
and some upper right corner)

Thus, we get fairly robust execution of a plan, possibly repeating a step that didn’t
work, or skipping one that is serendipitously accomplished for us. But, we don’t
plan for every eventuality, and if things really go badly, we stop and replan.

61

Lecture 13 • 61

Hybrid Architectures

• Reactive lower level
• Deliberative higher level

Ultimately, in most systems, you want some combination of fast, “reactive”
programs in the lowest layers with flexible “deliberative” systems in the higher
layers.

62

Lecture 13 • 62

Hybrid Architectures

• Reactive lower level
• Deliberative higher level

Primitive
Behaviors

images

motor
commands

Robot

A “reactive” program might be a universal plan, or a servo-loop that drives a mobile
robot down a hallway. It typically has a quick cycle time, and it never really
stops acting in order to think.

63

Lecture 13 • 63

Hybrid Architectures

• Reactive lower level
• Deliberative higher level

Planner/
Replanner

Primitive
Behaviors

Sensory
Predicates

images

motor
commands

Robot

predictions

perceptions

In parallel with the reactive primitives, you might have a planning/replanning
system that takes as its atomic actions things like driving across the room, which
actually turn out to be pretty complex procedures from the perspective of the
reactive layer.

64

Lecture 13 • 64

Hybrid Architectures

• Reactive lower level
• Deliberative higher level

Planner/
Replanner

Primitive
Behaviors

Sensory
Predicates

images

motor
commands

actions

Robot

predictions

perceptions

The planner makes a plan, and feeds the actions, one by one, into the reactive layer,
which executes the actions. Simultaneously, the world is monitored to see what
effects are actually happening in the world. Often the planner can predict what
ought to be happening in the world, which can make sensory processing easier.

65

Lecture 13 • 65

Hybrid Architectures

• Reactive lower level
• Deliberative higher level

Planner/
Replanner

Primitive
Behaviors

Sensory
Predicates

images

motor
commands

actions

Robot

predictions

perceptions

If the plan-monitoring system detects that the plan is not having the expected
effects, it replans and continues. An advantage of having a reactive lower level
continuing in parallel with the planning and replanning is that , even when the
“higher” brain is occupied with figuring out what to do next at the high level of
abstraction, the lower layer is there to execute automatic reflex reactions; to
keep the robot from running into things or the creature from being eaten.

66

Lecture 13 • 66

Hybrid Architectures

• Reactive lower level
• Deliberative higher level

Planner/
Replanner

Primitive
Behaviors

Sensory
Predicates

images

motor
commands

actions

Robot

predictions

perceptions

We don’t have any concrete recitation problems for this lecture, or the previous
one.

Next time, we’ll start in on probability, and we’ll have a lot of exercises to do.

