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6.825 Techniques in Artificial Intelligence

Probability

• Logic represents uncertainty by disjunction

OK, today's the day to  switch gears into a whole new part of the class.  So far, 
we've been reasoning about the world with models of the world that  are 
deterministic.  They talk about the world as being  certainly in one state or 
another and as evolving from state to state deterministically.  Within logic, we 
have a way  of allowing ourselves uncertainty, which is to use disjunction.  So 
you can say the box is  either red or blue, and I don't know which.  There is a 
method for articulating uncertainty. 
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6.825 Techniques in Artificial Intelligence

Probability

• Logic represents uncertainty by disjunction
• But, cannot tell us how likely the different 

conditions are

And you can  imagine, if you're really confused, using really big  disjunctions to 
say, well, I don't know whether this or  this or this or that or that.  But the 
problem with  really big disjunctions is that you don't have a way of  saying 
which of these outcomes is more likely  than which other ones.  So if I try to  
drive to Boston, it might take me ten minutes, but it  might also take me twenty 
minutes, or an hour, or a  further amount of time, and in thinking about how I  
want to drive or whether I want to go at this time of  day, I really need some 
kind of  quantitative understanding of the relative likelihood  of these different 
things.  It's not enough to know that  there are a whole bunch of different 
possible outcomes.   I want to know that some of them  are more likely than 
others. 
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6.825 Techniques in Artificial Intelligence

Probability

• Logic represents uncertainty by disjunction
• But, cannot tell us how likely the different 

conditions are
• Probability theory provides a quantitative way of 

encoding likelihood

So in this second part of the course we're going to concentrate on probabilistic 
methods and  models of the uncertainty in the world,  and the big thing that they 
give us is the ability to  attach numbers to the likelihood of various kinds of  
results. 

Some experience with probability is a prerequisite for  this course, so I assume that 
you've seen it once  before, but today I'm going to just go over some of  the 
basics, mostly just to establish a common  vocabulary because I think we're 
going to be looking at  it and using it in a way that may be different from the  
way that it's been introduced to you. 
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Foundations of Probability

First of all, I’d like to talk a little bit about the  foundations of probability. People 
have been  thinking about probability for a long time.  Hume is probably the 
first philosopher who had a semi-modern  but interesting view of probability, 
and he worried a  lot about the problem of induction.  Induction is  going to be 
really important to us when we get to  machine learning. How do I know that 
just  because the sun has come up every other day before  today, how do I know 
that it's going to come up  tomorrow? That was a really big problem for Hume, 
and it often is for machine learning, as well.
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Foundations of Probability

Is coin-flipping deterministic?

So let's think about coin-flipping for a minute.   Do you think that coin-flipping is a 
deterministic  or a non-deterministic process?  

One answer is that it’s deterministic;  that if you knew everything about the coin 
flipping process, then you could predict the outcome.  If you knew the initial  
conditions, if you knew the forces, if you knew the  wind currents in the room, if 
you knew whatever there  was to know, if you knew all that, then there would be  
an actual fact of the matter.  It’s going to land heads or it’s going to land tails, 
and that's  determinate, and there's no uncertainty.  There's no deep uncertainty 
in the process.   Any uncertainty we have about the outcome is really rooted in a 
lack of information.

Another view is that it’s truly random.  That no matter how much you know, you 
can’t actually predict how the coin will come up.  Maybe most modern 
physicists don’t believe this about coins any more.  But they do believe it about 
all sorts of other phenomena at the quantum level.

But even at the level of quantum mechanics, it's  not absolutely clear that there's not 
really another story  underneath there that would make it deterministic.  We  
don't happen to know it, but maybe there is. There might be a story that would 
remove all the  uncertainty.  Or it would at least push the uncertainty  down into 
yet another different level of the story.  We’re not going to get into the whole 
question  of reductionism, but it's an important thing to at  least keep in mind 
that we use this term uncertainty to  really talk about two kinds of things,  To 
talk about real randomness in a process and to talk about our uncertainty about a 
process.
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Foundations of Probability

Is coin-flipping deterministic?

P(the sun comes up tomorrow) = 0.999

What if I said that the probability that the sun will come up tomorrow is 0.999?  
You’d probably disagree, saying that certainly, we have many more than 1000 
examples of the sun coming up.  0.999 seems like too small a number.
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Foundations of Probability

Is coin-flipping deterministic?

P(the sun comes up tomorrow) = 0.999

• Frequentist
• Probability is inherent in the 

process
• Probability is estimated from 

measurements

Probs can be 
wrong!

Probs can be 
inconsistent!

The standard view of  probability, and the one that, if you took a statistics  class is 
certainly the one that you were exposed to, is  the frequentist view.  And it says 
that probability is  really statements of frequency.  That is,  in saying  the 
probability of the sun coming up tomorrow is 0.999,  you are saying that one out 
of a thousand times, it's not going  to come up.  And that the way that you can 
get that  probability is by watching this event over and over and  over lots of 
times, multiple trials, and measuring it.  

In the frequentist view, that's what it means to be a probability.   You estimate it by 
measuring it, and usually the idea is that the probability is something that’s 
inherent in the process.
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Foundations of Probability

Is coin-flipping deterministic?

P(the sun comes up tomorrow) = 0.999

• Frequentist
• Probability is inherent in the 

process
• Probability is estimated from 

measurements

If you want to take a frequentist approach to  something like "the sun comes up 
tomorrow," it really matters what we mean by “tomorrow”.  The  question is, 
does it refer to actual tomorrow, or  tomorrows in general?  Because if you want 
to  say, "Well, let me look and see how many days there  have been in the past 
that we've seen the sun come up"  and do some statistical estimation of the 
probability, that's  somehow implying that today is like yesterday which is  like 
the day before, which is like the day before that,  which is like the actual 
tomorrow, and that therefore,  that whole set can be taken together and thought 
of as  samples of whether or not the sun comes up.  So whether  or not the sun 
comes up on actual tomorrow-- that  particular question has never been tested.  
We have  no data about that, so what can we measure?  How could we  gather 
frequentist information about whether the sun's  going to come up tomorrow?
Maybe we can't.. 
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Foundations of Probability

Is coin-flipping deterministic?

P(the sun comes up tomorrow) = 0.999

• Frequentist
• Probability is inherent in the 

process
• Probability is estimated from 

measurements

• Subjectivist (Bayesian)
• Probability is a model of your

degree of belief

I think the frequentist view of  probability is fraught with complications.  It's very 
hard, I think, to get the story exactly right.  We could  go and try to do that, but 
I'm going to advocate a  different approach, which is also, I think, much more  
useful for AI, which is the subjective approach, or  sometimes called the 
Bayesian view, and that's that  probability is a model of your degree of belief; 
your  personal, private degree of belief.  And so then it's  no longer correct to 
say "the probability" that  this coin comes up heads, or "the probability" that the  
sun comes up tomorrow.  It's the degree to which I think  this coin is going to 
come up heads, or the degree to  which I think the sun is going to come up 
tomorrow. 
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Foundations of Probability

Is coin-flipping deterministic?

P(the sun comes up tomorrow) = 0.999

• Frequentist
• Probability is inherent in the 

process
• Probability is estimated from 

measurements

• Subjectivist (Bayesian)
• Probability is a model of your

degree of belief

Probs can be 
wrong!

Here’s an interesting difference between the frequentist and the subjectivist views. 
In the frequentist view, you can be wrong.  You  could say, "I think the 
probability of this coin coming  up heads is 0.6," and a frequentist could hit you 
on  the head and say, "No, it's 0.4."  There is a fact of the matter to  argue about. 
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Foundations of Probability

Is coin-flipping deterministic?

P(the sun comes up tomorrow) = 0.999

• Frequentist
• Probability is inherent in the 

process
• Probability is estimated from 

measurements

• Subjectivist (Bayesian)
• Probability is a model of your

degree of belief

Probs can be 
wrong!

Probs can be 
inconsistent!

In the subjectivist view, you can't be  wrong.  It's like pain. You can't be wrong 
about whether  you're in pain.  You can't be wrong about your beliefs.   Well, it 
turns out that you can be a little bit wrong.   In the subjectivist  probability view, 
you can't be wrong, per se, but  you can be inconsistent.  And we'll spend a little 
bit  of time in this lecture exploring what it means to be  inconsistent, and why 
you shouldn't be inconsistent.
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Axioms of Probability

Let's talk about the axioms of probability  theory, the basic ideas of probability, and 
then we'll  think about whether that formal system is a good map or  model for 
people’s degree  of belief about things in the world.   It's easy to argue that the 
formal system   does a good job of telling the frequentist story, which  you 
probably already understand at a basic level, but the connection to the Bayesian 
story is  more interesting. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).

Probability theory is a logic.   It's a language for taking about the likelihood of  
events.  We start with a universe,  and we'll just talk about the discrete case.  
Maybe when  we get into learning we'll do a little bit of stuff in  continuous 
probability, but the discrete case is enough for now.  So you have some universe 
of atomic  events, things that could happen or ways the world  could be.  You 
could almost think of atomic events as  being like interpretations, back in the 
logical world. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events

An event, then is a set of atomic events, which is also a subset of the universe.
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

We're  going to want to talk about the probability of  events.  How likely is it that 
some event will occur?  Remember, again, back in  logic, a formula in logic 
describes a set of   interpretations.  It talks about some set of ways the  world 
could be.  We're going to talk about sets of ways  the world could be, also, but 
instead of assigning truth value one or zero to a  set of ways the world could be, 
we're going to assign a  probability between zero and one.  So anything in  
between zero and one to a set of ways the world could  be.    You can think of a 
probability distribution as a function that maps events into the range zero and 
one. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

In the discrete case, you can think of the probability of an event as being the 
proportion of the whole universe that is contained in that event.   By definition, 
probability satisfies the following properties. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)

The probability of True is one.  The probability of True is the probability  of the 
universe, the probability that something in this  realm of discussion that we have 
available to us is  actually the case, is one.  So when you say, "Here's my 
universe," and you say, "These are all the  ways the world could be," well, the 
world's got to be  in one of the ways that it can be. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)

The probability of  False is zero. If you think of it in terms of  atomic events, false is 
the empty set.  So the  probability that none of these events is happening is  zero.   
There's a whole bunch of ways the world could  be, and one of them is actually the 
case.  So far,  this just maps onto propositional logic  directly. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)
• P(A v B) = P(A) + P(B) – P(A Æ B)

Then we really have just one more axiom, that the probability of A or B is the 
probability of A plus the probability of B minus the probability of A and B. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)
• P(A v B) = P(A) + P(B) – P(A Æ B)

I’m sure you’ve all seen this argument from a Venn diagram, but we’ll go over it 
again to be sure. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)
• P(A v B) = P(A) + P(B) – P(A Æ B)

U

Let the pink box be the universe. 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)
• P(A v B) = P(A) + P(B) – P(A Æ B)

A U

And let A be some event, some subset of  the universe 
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)
• P(A v B) = P(A) + P(B) – P(A Æ B)

A B U

and let B be another event, another subset of the universe.
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Axioms of Probability

• Universe of atomic events (like interpretations in logic).
• Events are sets of atomic events
• P: events → [0,1]

• P(true) = 1 = P(U)
• P(false) = 0 = P(∅)
• P(A v B) = P(A) + P(B) – P(A Æ B)

A B U

A Æ B

Now, let’s think about the probability that A or B is true.  The probability that A is 
true is the proportion of atomic events that are in A.  The probability that B is 
true is the proportion of atomic events in B.  The probability that A or B is true 
is the proportion of atomic events that are in the union of A and B.  So, how big 
is that union?  We could say it’s as big as A plus B, but that’s not exactly right, 
because we’d be counting the atomic events in the overlapping section twice.  
So, we have to correct for that.

This argument leads us to the axiom that the probability of A or B is the probability 
of A plus the probability of B, minus the probability of A and B (that’s the 
proportion of events in the overlap, which we don’t want to count twice).

That's all you ever need to know about  discrete probability.  Everything else about 
probability is a consequence of these axioms (but some of the consequences are 
more obvious than others!). 
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Recitation Problem I

Prove that 
• P(¬ A) = 1 – P(A)

• P(A v B v C) = 
P(A) + P(B) + P(C) –
P(A ÆB) – P(A Æ C) – P(B Æ C) + 
P(A ÆB Æ C)

Here are a couple of simple probability exercises.  Please do them before the next 
recitation.
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A Question

Jane is from Berkeley.  She was active in 
anti-war protests in the 60’s.  She lives in a 
commune.

• Which is more probable?
1. Jane is a bank teller
2. Jane is a feminist bank teller

Now I want to ask you a question.  Try to answer it as if you’re a normal human 
being (and not a hyperintellectual student ☺).  Just read it on the slide and think 
about it.
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A Question

Jane is from Berkeley.  She was active in 
anti-war protests in the 60’s.  She lives in a 
commune.

• Which is more probable?
1. Jane is a bank teller
2. Jane is a feminist bank teller

1. A
2. A Æ B

If you ask a group of regular people this question, the overwhelming answer is 2, 
that Jane is a feminist bank teller.  But that answer is inconsistent with the theory of 
probability.  No matter what the words mean, we can think of “Jane is a bank teller” 
as event A and “Jane is a feminist” as event B. 



28

Lecture 14 • 28

A Question

Jane is from Berkeley.  She was active in 
anti-war protests in the 60’s.  She lives in a 
commune.

• Which is more probable?
1. Jane is a bank teller
2. Jane is a feminist bank teller

1. A
2. A Æ B

A B U
A Æ
B

Then the question is,  which is more probable: A, or A and B?  But A and B has to 
be a subset of A.  So it can never be the case that A and B is more probable than 
A by itself.  A and B has more restrictions and conditions.
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A Question

Jane is from Berkeley.  She was active in 
anti-war protests in the 60’s.  She lives in a 
commune.

• Which is more probable?
1. Jane is a bank teller
2. Jane is a feminist bank teller

1. A
2. A Æ B

A B U
A Æ
B

This  example isn't mine.  There's actually a fascinating  field of psychology where 
they demonstrate all the ways in which people are clearly  and systematically 
not correct probabilistic  reasoners.   It's  interesting, and it leads you to 
cognitive  theories of how it is that people may do their  uncertain reasoning 
instead, and one big idea is that there is a notion of prototypes.  So when you  
read this story, you get a prototypical Jane in  mind.  She probably has 
Birkenstocks on. And you think about that Jane and she doesn't seem like a bank 
teller.  But  she does seem like a feminist, and so answer number two  just seems 
so much more attractive.  But in terms of  probability theory, it's not. 
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Dutch Book

So there's inconsistency in some people's beliefs, and now  I can show that if you 
have this inconsistency, I ought  to be able to cause you to make a set of bets 
with me  that will allow me to win, no matter what happens.  So let me do this.  
This is  also sort of a parlor trick, but I like it. This way of arranging bets is 
called a "Dutch book".   I'm not sure why, exactly.  It's an old term from theory  
of probability and philosophy. The phrase “to make book” in English means to  
set the odds on a bunch of events, like the guys at the horse races do.  The idea 
here is  that if you have inconsistent beliefs, then I can set some  odds on some 
bets such the bets are  attractive to you and you will want to take them. But I  
can prove that no matter what happens in the world I  win. 
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

So imagine that you assign  the probability of A to be 0.3 and the probability of A 
and B to be 0.4.  I can show that I can get you  into trouble that way. 
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

0.4

0.3

A Æ ¬B

A Æ B

A

¬ A Æ ¬

B
¬ A ÆBA Æ BBet StakesYou

Here’s a chart.  Let's  say you believe  proposition A with probability 0.3, and 
proposition A and B  with probability 0.4.  There's an  example like this in the 
book, but it's of a different  problem. 
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

3 to 7

0.4

0.3

A Æ ¬B

A Æ B

AA

¬ A Æ ¬

B
¬ A ÆBA Æ BBet StakesYou

If you take a 3 to 7 bet on some condition C, then if C turns out 
to be true, you lose 7, but if it’s false, you win 3.

Now, I offer you a bet.  I say, if Jane turns out to be a bank teller (let that be our 
interpretation of A, just for intuition), then you pay me 7 dollars, but if she 
doesn’t, I’ll pay you 3 dollars. 
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

6 to 4

3 to 7

0.4

0.3

A Æ ¬B

¬(A ÆB)A Æ B

AA

¬ A Æ ¬

B
¬ A ÆBA Æ BBet StakesYou

If you take a 3 to 7 bet on some condition C, then if C turns out 
to be true, you lose 7, but if it’s false, you win 3.

And I also offer you another bet.  If Jane turns out not to be a feminist bank teller, 
you’ll pay me 4 dollars, but if she does, I’ll pay you 6.

Since the odds on these bets match up with your beliefs, you should want to take the 
bets.  In fact, people often define subjective probability as willingness to bet.  
So, in fact, if you’re willing to take these bets, then we know something about 
your beliefs. 
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

6 to 4

3 to 7

0.4

0.3

-4

-7

A Æ ¬B

-4-46 + ε¬(A ÆB)A Æ B

3 + ε3 + ε-7AA

¬ A Æ ¬
B

¬ A ÆBA Æ BBet StakesYou

If you take a 3 to 7 bet on some condition C, then if C turns out 
to be true, you lose 7, but if it’s false, you win 3.

To make these bets even a little bit more attractive (so that you think you’d actually 
make money, rather than break even), I can even add a bit to the positive 
outcomes for you.  

So we can fill in the table, considering all the possible outcomes of events A and B, 
and writing in the cell how much money you will win or lose.
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

6 to 4

3 to 7

0.4

0.3

-4

-7

A Æ ¬B

-4-46 + ε¬(A ÆB)A Æ B

3 + ε3 + ε-7AA

¬ A Æ ¬
B

¬ A ÆBA Æ BBet StakesYou

• No matter what the state of the world, you lose

If you take a 3 to 7 bet on some condition C, then if C turns out 
to be true, you lose 7, but if it’s false, you win 3.

If you add up each of those columns, each of  the ways the world could be, no 
matter what happens in  the world, I win.  And it's because you assigned a  
higher probability to A and B than you do to A.  It  doesn't matter what B is.  
You just shouldn't do that. 
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Dutch Book

• You believe
• P(A) = 0.3
• P(A Æ B) = 0.4  (and also that P(¬ (A Æ B)) = 0.6 ) 

6 to 4

3 to 7

0.4

0.3

-4

-7

A Æ ¬B

-4-46 + ε¬(A ÆB)A Æ B

3 + ε3 + ε-7AA

¬ A Æ ¬
B

¬ A ÆBA Æ BBet StakesYou

• No matter what the state of the world, you lose
• This is because your beliefs are inconsistent

If you take a 3 to 7 bet on some condition C, then if C turns out 
to be true, you lose 7, but if it’s false, you win 3.

If your beliefs are consistent, I can't do this to  you.  If they follow the axioms of 
probability, I can't arrange to make money off of you no matter what happens.  
Obviously, even if your beliefs are  consistent, you could lose money in some 
circumstances,  but you'd also win money in some other circumstances.   But if 
your beliefs are inconsistent with the laws of  probability, I can guarantee that 
you always lose.  So let that be our  motivation for wanting to codify beliefs 
using laws of  probability.  It is obviously, patently not what people  do, but it's 
probably at least a good  foundation upon which to build computer systems that  
try to do a good job of solving problems in the world. 
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Random Variables

• Random variables

Now we’re going to develop a set of tools for understanding and computing 
probabilities in complex domains.  We’ll start by talking about random 
variables. 
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Random Variables

• Random variables
• Function: discrete domain → [0, 1]

The cliche about random variables is that they're neither  random nor variables.  
You can think of a random variable as a function from some discrete domain, in 
our case, into  zero and one. 
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Random Variables

• Random variables
• Function: discrete domain → [0, 1]

• Sums to 1 over the domain

It is also required that the probabilities assigned by the random variable to all values 
in the domain sum to 1.  You can think of a random variable as describing a 
probability distribution in which the atomic events are the possible values that 
the variable could take on.
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Random Variables

• Random variables
• Function: discrete domain → [0, 1]

• Sums to 1 over the domain
–Raining is a propositional random variable

We'll mostly look at propositional random  variables, things like “is it raining or is it 
not.” 
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Random Variables

• Random variables
• Function: discrete domain → [0, 1]

• Sums to 1 over the domain
–Raining is a propositional random variable
–Raining(true) = 0.2   

– P(Raining = true) = 0.2

To say that it’s raining with probability 0.2, is to say that the raining random 
variable takes on value true with probability 0.2.  We could write it like this to 
make the point about random variables being a function.  But the more usual 
way to write it is P(raining = true) = 0.2



43

Lecture 14 • 43

Random Variables

• Random variables
• Function: discrete domain → [0, 1]

• Sums to 1 over the domain
–Raining is a propositional random variable
–Raining(true) = 0.2   

– P(Raining = true) = 0.2

–Raining(false) = 0.8  
– P(Raining = false) = 0.8

Now, because there are only two possible values for a propositional random 
variable, and they have to sum up to 1, then if the probability that raining is true 
is 0.2, then the probability that raining is false has to be 0.8.
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Random Variables

• Random variables
• Function: discrete domain → [0, 1]

• Sums to 1 over the domain
–Raining is a propositional random variable
–Raining(true) = 0.2   

– P(Raining = true) = 0.2

–Raining(false) = 0.8  
– P(Raining = false) = 0.8

• Joint distribution
• Probability assignment to all combinations of 

values of random variables

Now, if you have multiple random variables, we can talk about their joint 
distribution.  And  that's really the probability assignment to all  combinations of 
the values of the random  variables.  In general, the joint distribution cannot be 
computed from the individual distributions (which are typically called the 
“marginal” distributions).
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

Here's an example of the joint  distribution.  Imagine that we're embarking on a little 
dentistry  and we want to understand the relationship between  having 
toothaches and having cavities.  Our domain  has two random variables in it, 
two propositional  random variables.  Does the patient have a toothache or  not?  
Does the patient have a cavity or not?  So you  can make a little table with 
spaces for the cross product of the values of the random variables.  There's  
cavity, not cavity, toothache, not   toothache, and then we have to fill in some 
probabilities. 
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1

What do we know about  the sum of the values in that table?  That they have to  add 
up to one.  Remember, we said that the probability  of the universe was one.  
Each cell in the table corresponds to an event.  These events are mutually 
exclusive (it’s impossible for any two of them to occur at once), so there’s no 
overlap.  And there are no other ways the world could possibly be.  So, the 
probability of the universe is the sum of these probabilities. 
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain

Given this table, given the joint  distribution of all the variables in your domain, you  
can answer any probability question that anybody would  ever ask you.  That's, 
in some sense, all there is  to know.  And if you're in a domain that only has two  
variables, that's cool.  You can just make up a table  and then answer questions 
with it.  We'll see how to  answer some questions.  But obviously, in a domain 
that's very big, you don't want to ever have to make that  table, and so what 
we're going to do is spend the next  couple of weeks looking at ways of doing 
probabilistic  reasoning, taking advantage of some structural  properties of your 
knowledge in the world to let you ask  and answer probability questions without 
making the  whole table.  But today we'll use the table just to illustrate some 
points so that we know what the  underlying definitions of various things are. 
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain
• P(cavity) = 0.1   [add elements of cavity row]

What is the probability of  cavities?  The probability of cavity is 0.1.  How do we 
compute it?  We sum over all the different situations in which someone could 
have a cavity (in this case, with and without a toothache).
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain
• P(cavity) = 0.1   [add elements of cavity row]
• P(toothache) = 0.05 [add elements of toothache column]

Now, what’s the probability of toothache?  We get 0.05, by adding up the elements 
of the toothache column. 
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain
• P(cavity) = 0.1   [add elements of cavity row]
• P(toothache) = 0.05 [add elements of toothache column]
• P(A | B) = P(A Æ B)/P(B) [prob of A when U is limited to B]

Now let's look at the notion of  conditional probability.  We’ll introduce the 
probability of A given B.  What’s the probability that A is true, if we already 
know that B is true?  It’s defined to be the probability of A and B divided by the 
probability of B.
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain
• P(cavity) = 0.1   [add elements of cavity row]
• P(toothache) = 0.05 [add elements of toothache column]
• P(A | B) = P(A Æ B)/P(B) [prob of A when U is limited to B]

A B
U

A Æ B

This is sort of like saying we are restricting our  consideration just to the part of the 
world in which B  is true;  then what proportion of events in A? So if we look at 
the Venn diagram again, It’s like we’re going to compute the probability of A, 
but we’re going to (temporarily) take the universe to be B, rather than U.  So 
this conditional probability is the ratio of the green area to the green and yellow 
areas. 
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain
• P(cavity) = 0.1   [add elements of cavity row]
• P(toothache) = 0.05 [add elements of toothache column]
• P(A | B) = P(A Æ B)/P(B) [prob of A when U is limited to B]

• P(cavity | toothache)
A B

U

A Æ B

So in our example, we can ask, what is the probability that someone who comes into 
the dental office with a toothache has a cavity.  That would be the probability of 
cavity given toothache. 
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Joint Distribution Example

0.890.01
¬Cavity

0.060.04Cavity

¬ToothacheToothache

• The sum of the entries in this table has to be 1
• Given this table, one can answer all the probability questions 

about this domain
• P(cavity) = 0.1   [add elements of cavity row]
• P(toothache) = 0.05 [add elements of toothache column]
• P(A | B) = P(A Æ B)/P(B) [prob of A when U is limited to B]

• P(cavity | toothache) = 0.04/0.05 = 0.8
A B

U

A Æ B

And how can we compute that probability?  We start by figuring out the probability 
of cavity and toothache (which corresponds to the green area in the diagram),
which is 0.04 (we can just look it up).  Then we divide by the probability of 
toothache (corresponding to the green and yellow areas of the diagram), which 
is 0.05, yielding a result of 0.8.  So, the probability that someone has a cavity, in 
general, is 0.1.  But if we know they have a toothache, then the probability that 
they have a cavity goes up to 0.8.  Ouch!

This is the structure of the kind of reasoning that we'll be doing a lot of.  You start 
out with a prior probability of 0.1 that someone has a cavity. The idea here is 
that you walk into this problem having some belief about the likelihood that a 
patient has a cavity.  Now, maybe this belief was derived from past experience, 
maybe it's derived from reading textbooks, maybe it's derived from talking to 
other people.  Who knows what, but it's your personal, private belief that the 
next person walking through your door is going to have a cavity. Then you ask 
him, "How do you feel," and they say, "I have a toothache."  Then if you know 
the probability of cavity and toothache, then you can figure out the probability 
of cavity in that case.  We'll actually see a way of automating this process and 
see exactly what information you need to make it work out pretty efficiently. 
But that's how the story goes.
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Bayes’ Rule

• Bayes’ Rule
• P(A | B) = P(B | A) P(A) / P(B)

There's another way to write down a conditional  probability.  You can say that the  
probability that A  given B is equal to the probability of B given A times  the 
probability of A, divided by the probability of B.  This is just an algebraic  
massaging of the stuff that we already know.  And on the face of it, it doesn't 
necessarily seem very useful.  But what  we'll see is that in fact it's a kind of 
reasoning that  we naturally do all the time. 
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Bayes’ Rule

• Bayes’ Rule
• P(A | B) = P(B | A) P(A) / P(B)
• P(disease | symptom) 

= P(symptom | disease) P(disease)/ P(symptom)

Let me write this  again with different kind names for the variables.   You might, for 
instance, want to ask, what's the  probability of some disease given this 
symptom.  Well,  that's the probability of the symptom given the disease, times 
the prior probability of the disease  divided by the probability of the symptom.  

So a common reasoning  pattern is that start with a prior probability of the disease.  
This is our belief about the  state of affairs when we don't have any evidence at  
all.  Then, we get some information.  Somebody tells me this person has a 
symptom.  And then we would like  to update our beliefs.  We'd like to take 
what we used  to believe and the evidence that we just got and  combine them 
together and compute a new belief, a new  degree of belief in whether this 
patient has this  disease.  In order to do that, we need, apparently,  to know two 
things.  We need to know the  probability of this symptom, although we'll come 
back  to that.  It turns out that we can kind of finesse that.  But what we really 
need to know is the  probability of the symptom, given the disease.  What's  the 
probability, for instance, of having a toothache  given that I have a cavity?

Why wouldn't I want to  just learn the conditional probability of disease given 
symptom to begin with,  rather than having to compute it from other things?  
The  answer is that these  conditional probabilities, of symptom given disease, 
tend to be more generally  useful, more true across a broad range of situations.
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Bayes’ Rule

• Bayes’ Rule
• P(A | B) = P(B | A) P(A) / P(B)
• P(disease | symptom) 

= P(symptom | disease) P(disease)/ P(symptom)
• Imagine 

– disease = BSE
– symptom = paralysis
– P(disease | symptom) is different in England vs US

Imagine that  the disease is bovine spongiform encephalopathy, or BSE.  That is, 
mad cow disease.  I have a cow that is paralyzed, and I want to know the 
probability that it has BSE.  Here in the US, it’s probably pretty low.  But what 
if I were in England?  Then, the probability might be higher. 
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Bayes’ Rule

• Bayes’ Rule
• P(A | B) = P(B | A) P(A) / P(B)
• P(disease | symptom) 

= P(symptom | disease) P(disease)/ P(symptom)
• Imagine 

– disease = BSE
– symptom = paralysis
– P(disease | symptom) is different in England vs US
– P(symptom | disease) should be the same
– It is more useful to learn P(symptom | disease) 

Why?  Because the base rate is different in the two different places.  But we expect 
the disease process to be essentially the same, so that the probability of the 
symptom of paralysis given the disease BSE remains the same on both sides of 
the Atlantic.

It turns out that in all kinds of   domains it's easier and more useful and more 
generally  applicable to learn these causal kinds of relationships and  compute 
the diagnostic information when necessary using your base rate, than  to try to 
learn these diagnostic probabilities directly.  So this is how  diagnostic systems 
normally get built.  It also  lets us chain evidence together in a way that I'm 
going  to do next. 
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Bayes’ Rule

• Bayes’ Rule
• P(A | B) = P(B | A) P(A) / P(B)
• P(disease | symptom) 

= P(symptom | disease) P(disease)/ P(symptom)
• Imagine 

– disease = BSE
– symptom = paralysis
– P(disease | symptom) is different in England vs US
– P(symptom | disease) should be the same
– It is more useful to learn P(symptom | disease) 

• Conditioning
• P(A) = P(A | B) P(B) + P(A | ¬B) P(¬B)

What’s left to deal with is probability of the symptom.  It turns out that there's an  
easy way you can deal with the probability of  symptom.  And we can do it 
using a process that's  awfully useful to know about.  There's a standard 
maneuver in probability called conditioning.   Here’s the general rule.  We can 
say the probability  of A is equal to the probability of A given B  times the 
probability of B + probability or A given not B times the probability of not B. 
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Bayes’ Rule

• Bayes’ Rule
• P(A | B) = P(B | A) P(A) / P(B)
• P(disease | symptom) 

= P(symptom | disease) P(disease)/ P(symptom)
• Imagine 

– disease = BSE
– symptom = paralysis
– P(disease | symptom) is different in England vs US
– P(symptom | disease) should be the same
– It is more useful to learn P(symptom | disease) 

• Conditioning
• P(A) = P(A | B) P(B) + P(A | ¬B) P(¬B)

= P(A Æ B) + P(A Æ ¬B)

It’s pretty easy to prove.  We can see, by the definition of conditional probability, 
that the first term is equal to the probability that A and B, and the second term is 
the probability that A and not B.  So the probability of A and B or A and not B 
is equal to the sum of the probabilities (since they don’t overlap), which is equal 
to the probability that A.  

We could use the conditioning rule to compute the probability of the symptoms.  
It’s going to turn out to be the probability of symptom given disease times the 
probability of the disease,  plus the probability of the symptoms given no 
disease times the probability of no disease.
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

I'm sure you've  come across the idea of two events being independent. We'll say A 
and B are independent,  if and only if the probability that A and B are true is the 
product of the individual probabilities of A and B being true. 
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

• P(A | B) = P(A)

There are two other ways to say the same thing, that give a different intution.  One 
is that the probability of A given B is the same as the probability of A.  That 
means that knowing that B is true doesn’t give us any more information about 
the truth of A. 
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

• P(A | B) = P(A)
• P(B | A) = P(B)

We can, equivalently, turn this around in the other direction.
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

• P(A | B) = P(A)
• P(B | A) = P(B)

Somebody's  height and weight are not independent.  Whether you get  a good grade 
in this class and listen to the lectures, I  hope are not independent.  What you ate 
for  breakfast and how you do in this class probably are  independent, except 
that there are studies that show  the students that don't eat breakfast don't do well 
in  school.  It may be that at some level  everything is dependent, but we can at 
least make some  kind of abstraction of independence just to get on with  things, 
because it's going to turn out that  independence relations are the key to doing  
probabilistic reasoning efficiently. 
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

• P(A | B) = P(A)
• P(B | A) = P(B)

• Independence is essential for efficient probabilistic 
reasoning

If every  possible thing you could know bears on every possible other thing that 
could be, then in some sense there's  nothing to but to consider completely 
specified world states all at once.  But if these  things can be kind of taken apart 
a little bit, if you  can think about breakfast without thinking about the  color of 
the car you drive, then that would be good,  and so we're going to look at ways 
of using  independence relations to make reasoning more  efficient. 
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

• P(A | B) = P(A)
• P(B | A) = P(B)

• Independence is essential for efficient probabilistic 
reasoning

• A and B are conditionally independent given C iff
• P(A | B, C) = P(A | C)

There's a more  general notion, which is called conditional  independence.  We'll 
say that A and B are  conditionally independent given C if and only if the  
probability of A given B and C is equal to the  probability of A given C.  

To understand this, assume someone told you C.  Now, the question is, if they were 
also to tell you B, would that change the probability that A is true?  And if A 
and B are conditionally independent given C, then if you already know C, B 
won’t tell you anything about A.
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Independence

• A and B are independent iff
• P(A Æ B) = P(A) · P(B)

• P(A | B) = P(A)
• P(B | A) = P(B)

• Independence is essential for efficient probabilistic 
reasoning

• A and B are conditionally independent given C iff
• P(A | B, C) = P(A | C)
• P(B | A, C) = P(B | C)
• P(A Æ B | C) = P(A | C) · P(B | C)

We can also write this in two other, equivalent ways.
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Examples of Conditional 
Independence

• Toothache (T)
• Spot in Xray (X)
• Cavity (C)

Imagine that now we have three  propositions.  We have whether you have a 
toothache,  whether there's a dark spot in your X-ray -- we'll call  it proposition 
X, a spot in your X-ray -- and whether  you have a cavity. 



68

Lecture 14 • 68

Examples of Conditional 
Independence

• Toothache (T)
• Spot in Xray (X)
• Cavity (C)
• None of these propositions are independent of one 

other

Again, in this way of thinking about  primary causes and their symptoms, you might 
imagine  that having a toothache is a symptom of having a  cavity, and having a 
spot on your X-ray is a symptom of  having a cavity, and certainly any pair of 
these  variables is related, so if somebody walks in and says,  "I have a 
toothache," then it's more likely that when  you take the X-ray they're going to 
have a spot, and  vice versa. So all these variables  are related to each other. 
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Examples of Conditional 
Independence

• Toothache (T)
• Spot in Xray (X)
• Cavity (C)
• None of these propositions are independent of one 

other
• T and X are conditionally independent given C

But typically it will be the case that T and  X are conditionally independent given C.  
The  idea is that whether or not you have  a toothache given that you have a 
cavity is not related  to whether or not it's going to show up on the X-ray.   All 
right?  Whether it hurts and whether you can see it  are independent given that 
it's there. This is a really crucial concept for the  next two weeks, so I want to be 
sure that you've got  the idea.
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Examples of Conditional 
Independence

• Toothache (T)
• Spot in Xray (X)
• Cavity (C)
• None of these propositions are independent of one 

other
• T and X are conditionally independent given C

• Battery is dead (B)
• Radio plays (R)
• Starter turns over (S)

Let me give you a car example,  where it's more clear, maybe even than toothaches.  
We  know more about cars than toothaches, most of us.  Let's say something's 
wrong with your car, and you're  considering the following proposition.  One is 
that the  battery is dead.  One is that the radio works; that the radio plays when 
you turn it on, and the other one is that the  starter turns over.  This is an English 
idiom meaning  that when you turn the key it makes noise. 
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Examples of Conditional 
Independence

• Toothache (T)
• Spot in Xray (X)
• Cavity (C)
• None of these propositions are independent of one 

other
• T and X are conditionally independent given C

• Battery is dead (B)
• Radio plays (R)
• Starter turns over (S)
• None of these propositions are independent of one 

another

Are any of these propositions -- just two of them -- independent of one another?  I 
don’t think so.  Because if you walk into a car and the radio plays, you're going 
to think it's more likely that the starter will turn over.  But if the radio doesn't 
play, you might naturally think, hmm, maybe the battery's dead and so the 
starter will not turn over.  So knowing this, here's the information about this.  
Any one of these gives you information about the other one. 
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Examples of Conditional 
Independence

• Toothache (T)
• Spot in Xray (X)
• Cavity (C)
• None of these propositions are independent of one 

other
• T and X are conditionally independent given C

• Battery is dead (B)
• Radio plays (R)
• Starter turns over (S)
• None of these propositions are independent of one 

another
• R and S are conditionally independent given B

So, what if I tell you the battery is good?  Definitely, I know it.  I tested it.  Now, 
does the radio playing tell you anything about the starter?  No. Well, you know, 
it might, actually, if it shared a wire to some other place in the car, but naively, 
if the starter's connected to the battery and the radio's connected to the battery, 
and they don't share anything else, then given that I know the battery works or 
given that I know the battery's dead, either way, the radio doesn’t give you 
information about the starter.  So in this case, we would say that R and S are 
conditionally independent given B.



73

Lecture 14 • 73

Combining evidence

• Bayesian updating given two pieces of information

So now let's think about how would you do  Bayesian updating when you have 
multiple pieces of  information to integrate.  Imagine that a person walks in the 
door of my dentists office and they complain of a toothache, and I take an x-ray 
and it is positive.  Then my problem is to  update my belief in whether or not the 
patient has a  cavity, given both of these pieces of information.  Formally, I want 
to know the probability of C given T and X.

We're going to start writing big conditional  probability formulas.  They're just 
going to get bigger  and have more things on the left and the right of the  bar.  If 
there are multiple variables on either side,  assume they're conjoined.  Assume 
that they’re connected with an and. 
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Combining evidence

• Bayesian updating given two pieces of information

Here is the probability that the person has a cavity  given that they have a toothache 
and there's a spot on  their X-ray.  How can we decompose it?  Well, we can 
start by using Bayes'  rule, which gives us the probability of T and X given C 
times the probability of C, divided by the probability of T and X.
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Combining evidence

• Bayesian updating given two pieces of information

• Assume that T and X are conditionally independent 
given C

Now,  unless we make some assumptions, we can't really go any  farther. Without 
making some  assumptions, you can't know the probability of T and X,  unless 
you've gone out and assessed it.  Unless  somebody's done studies of how many 
people have  toothaches and spots on their X-rays, or how many  people have 
both of those symptoms given they have a  cavity.  So what  we typically do is 
make an assumption of conditional  independence.  We often assume that the 
manifestation of different symptoms is independent given that the disease is 
present. 
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Combining evidence

• Bayesian updating given two pieces of information

• Assume that T and X are conditionally independent 
given C

So in this case, let's assume that T and  X are conditionally independent given C.  
That lets us  take this expression apart.   The probability of T and X given C 
becomes the probability of T given C times the probability of X given C.
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Combining evidence

• Bayesian updating given two pieces of information

• Assume that T and X are conditionally independent 
given C

• We can do the evidence combination sequentially

Now, this is pretty cool.  At least, the top looks really very nice.  The top says, well, 
I started out with this prior probability of someone having a cavity, and I find 
out that there's a spot on their X-ray so I multiply in a factor that takes that 
evidence into account, and then I find out that they have a toothache and then I 
multiply in another factor that takes that into account, and you can probably see 
just from the structure, at least, of the top part of the formula that we could do 
this evidence combination sequentially if we wanted to.   And we get the same 
answer, right?  So if first you found out that the patient had a toothache, and 
then later you found out that you had the X-ray, you could just fold that in 
incrementally.
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Normalizing Factor

So this part all looks pretty good, and  the only problem we're left with is the 
normalizing  constant P(T,X).  The reason people call it a  normalizing constant 
is because another way to look at it is that we know that the  probability of C 
given T and X plus the probability of not C given T and X has to be one. 
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Normalizing Factor

Now, you can turn both of these things around using Bayes’ rule (like we did on the 
last slide). 
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Normalizing Factor

And now multiply through by P(T,X), and you’re done. 
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Recitation Problems II

• Show that P(A) >= P(A,B)
• Show that P(A|B) + P(~A|B) = 1
• Show that the different formulations of conditional 

independence are equivalent:
• P(A | B, C) = P(A | C)
• P(B | A, C) = P(B | C)
• P(A Æ B | C) = P(A | C) · P(B | C)

• Conditional Bayes’ rule.  Write an expression for 
P(A | B,C) in terms of P(B | A,C).

Please do these problems for recitation.


