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6.825 Techniques in Artificial Intelligence

Inference in Bayesian Networks

Now that we know what the semantics of Bayes nets are;  what it means when we 
have one, we need to understand how to use it.  Typically, we’ll be in a situation 
in which we have some evidence, that is, some of the variables are instantiated, 
and we want to infer something about the probability distribution of some other 
variables.
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6.825 Techniques in Artificial Intelligence

Inference in Bayesian Networks

• Exact inference

In exact inference, we analytically compute the conditional probability distribution 
over the variables of interest.



3

Lecture 16 • 3

6.825 Techniques in Artificial Intelligence

Inference in Bayesian Networks

• Exact inference
• Approximate inference

But sometimes, that’s too hard to do, in which case we can use approximation 
techniques based on statistical sampling.
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Query Types

Given a Bayesian network, what questions might we 
want to ask?

Given a Bayesian network, what kinds of questions might we want to ask?
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Query Types

Given a Bayesian network, what questions might we 
want to ask?

• Conditional probability query:  P(x | e)

The most usual is a conditional probability query.  Given instantiations for some of 
the variables (we’ll use e here to stand for the values of all the instantiated 
variables;  it doesn’t have to be just one), what is the probability that node X has 
a particular value x? 
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Query Types

Given a Bayesian network, what questions might we 
want to ask?

• Conditional probability query:  P(x | e)
• Maximum a posteriori probability:

What value of x maximizes P(x|e) ?

Another interesting question you might ask is, what is the most likely explanation 
for some evidence?   We can think of that as the value of node X (or of some 
group of nodes) that maximizes the probability that you would have seen the 
evidence you did. This is called the maximum a posteriori probability or MAP 
query. 
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Query Types

Given a Bayesian network, what questions might we 
want to ask?

• Conditional probability query:  P(x | e)
• Maximum a posteriori probability:

What value of x maximizes P(x|e) ?

General question:  What’s the whole probability 
distribution over variable X given evidence e, 
P(X | e)?

In our discrete probability situation, the only way to answer a MAP query is to 
compute the probability of x given e for all possible values of x and see which 
one is greatest.
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Query Types

Given a Bayesian network, what questions might we 
want to ask?

• Conditional probability query:  P(x | e)
• Maximum a posteriori probability:

What value of x maximizes P(x|e) ?

General question:  What’s the whole probability 
distribution over variable X given evidence e, 
P(X | e)?

So, in general, we’d like to be able to compute a whole probability distribution over 
some variable or variables X, given instantiations of a set of variables e.
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Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Given the joint distribution over the variables, we can easily answer any question 
about the value of a single variable by summing (or marginalizing) over the 
other variables. 
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Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Pr(d) = Pr(a,b,c,d )
ABC
∑

= Pr(A = a∧B = b∧C = c)
c∈dom(C )

∑
b∈dom(B )
∑

a∈dom(A )
∑

So, in a domain with four variables, A, B, C, and D, the probability that variable D 
has value d is the sum over all possible combinations of values of the  other 
three variables of the joint probability of all four values.  This is exactly the 
same as the procedure we went through in the last lecture, where to compute the 
probability of cavity, we added up the probability of cavity and toothache and 
the probability of cavity and not toothache. 



11

Lecture 16 • 11

Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Pr(d) = Pr(a,b,c,d )
ABC
∑

= Pr(A = a∧B = b∧C = c)
c∈dom(C )

∑
b∈dom(B )
∑

a∈dom(A )
∑

In general, we’ll use the first notation, with a single summation indexed by a list of 
variable names, and a joint probability expression that mentions values of those 
variables.  But here we can see the completely written-out definition, just so we 
all know what the shorthand is supposed to mean.
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Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Pr(d) = Pr(a,b,c,d )
ABC
∑

= Pr(A = a∧B = b∧C = c)
c∈dom(C )

∑
b∈dom(B )
∑

a∈dom(A )
∑

Pr(d | b) = Pr(b,d)
Pr(b)

=
Pr(a,b,c,d )

AC
∑

Pr(a,b,c,d)
ACD
∑

To compute a conditional probability, we reduce it to a ratio of conjunctive queries 
using the definition of conditional probability, and then answer each of those 
queries by marginalizing out the variables not mentioned.



13

Lecture 16 • 13

Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Pr(d) = Pr(a,b,c,d )
ABC
∑

= Pr(A = a∧B = b∧C = c)
c∈dom(C )

∑
b∈dom(B )
∑

a∈dom(A )
∑

Pr(d | b) = Pr(b,d)
Pr(b)

=
Pr(a,b,c,d )

AC
∑

Pr(a,b,c,d)
ACD
∑

In the numerator, here, you can see that we’re only summing over variables A and 
C, because b and d are instantiated in the query.
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Simple Case

We’re going to learn a general purpose algorithm for answering these joint queries 
fairly efficiently.  We’ll start by looking at a very simple case to build up our 
intuitions, then we’ll write down the algorithm, then we’ll apply it to a more 
complex case.
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Simple Case

A B C D

Okay.  Here’s our very simple case.  It’s a bayes net with four nodes, arranged in a 
chain.
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Simple Case

A B C D

∑=
ABC

dcbad ),,,Pr()Pr(

So, we know from before that the probability that variable D has some value little d 
is the sum over A, B, and C of the joint distribution, with d fixed.
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Simple Case

A B C D

∑

∑
=

=

ABC

ABC

aabbccd

dcbad

)Pr()|Pr()|Pr()|Pr(

),,,Pr()Pr(

Now, using the chain rule of Bayesian networks, we can write down the joint 
probability as a product over the nodes of the probability of each node’s value 
given the values of its parents.  So, in this case, we get P(d|c) times P(c|b) times 
P(b|a) times P(a). 
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Simple Case

A B C D

∑

∑
=

=

ABC

ABC

aabbccd

dcbad

)Pr()|Pr()|Pr()|Pr(

),,,Pr()Pr(

This expression gives us a method for answering the query, given the conditional 
probabilities that are stored in the net.  And this method can be applied directly 
to any other bayes net.  But there’s a problem with it:  it requires enumerating 
all possible combinations of assignments to A, B, and C, and then, for each one, 
multiplying the factors for each node.  That’s an enormous amount of work and 
we’d like to avoid it if at all possible.
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Simple Case

A B C D

∑∑∑

∑

∑

=

=

=

C B A

ABC

ABC

aabbccd

aabbccd

dcbad

)Pr()|Pr()|Pr()|Pr(

)Pr()|Pr()|Pr()|Pr(

),,,Pr()Pr(

So, we’ll try rewriting the expression into something that might be more efficient to 
evaluate.  First, we can make our summation into three separate summations, 
one over each variable.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Pr(b1 | a1) Pr(a1) Pr(b1 | a2 ) Pr(a2 )
Pr(b2 | a1) Pr(a1 ) Pr(b2 | a2 ) Pr(a2 )

 

 
 






If you look, for a minute, at the terms inside the summation over A, you’ll see that 
we’re doing these multiplications over for each value of C, which isn’t 
necessary, because they’re independent of C.  Our idea, here, is to do the 
multiplications once and store them for later use.  So, first, for each value of A 
and B, we can compute the product, generating a two dimensional matrix.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Pr(b1 | a) Pr(a)
A
∑

Pr(b2 | a) Pr(a)
A
∑

 

 

 
 
 









Then, we can sum over the rows of the matrix, yielding one value of the sum for 
each possible value of b. 
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

f1(b)

We’ll call this set of values, which depends on b, f1 of b.
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Simple Case

B C D

Pr(d) = Pr(d | c) Pr(c | b) f1
B
∑

C
∑ (b)

f2 (c)

Now, we can substitute f1 of b in for the sum over A in our previous expression. 
And, effectively, we can remove node A from our diagram.  Now, we express 
the contribution of b, which takes the contribution of a into account, as f_1 of b.
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Simple Case

B C D

Pr(d) = Pr(d | c) Pr(c | b) f1
B
∑

C
∑ (b)

f2 (c)

We can continue the process in basically the same way.  We can look at the 
summation over b and see that the only other variable it involves is c.  We can 
summarize those products as a set of factors, one for each value of c.  We’ll call 
those factors f_2 of c.
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Simple Case

C D

Pr(d) = Pr(d | c) f2 (c)
C
∑

We substitute f_2 of c into the formula, remove node b from the diagram, and now 
we’re down to a simple expression in which d is known and we have to sum 
over values of c.
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables

That was a simple special case.  Now we can look at the algorithm in the general 
case.  Let’s assume that we’re given a Bayesian network and an ordering on the 
variables that aren’t fixed in the query.  We’ll come back later to the question of 
the influence of the order, and how we might find a good one.
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

We can express the probability of the query variables as a sum over each value of 
each of the non-query variables of a product over each node in the network, of 
the probability that that variable has the given value given the values of its 
parents. 
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

For i = m downto 1

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

So, we’ll eliminate the variables from the inside out.  Starting with variable Xm and 
finishing with variable X1.
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

For i = m downto 1
• remove all the factors that mention Xi

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

To eliminate variable Xi, we start by gathering up all of the factors that mention Xi, 
and removing them from our set of factors. Let’s say there are k such factors.
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

For i = m downto 1
• remove all the factors that mention Xi
• multiply those factors, getting a value for each 

combination of mentioned variables

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

Now, we make a k+1 dimensional table, indexed by Xi as well as each of the other 
variables that is mentioned in our set of factors.
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

For i = m downto 1
• remove all the factors that mention Xi
• multiply those factors, getting a value for each 

combination of mentioned variables
• sum over Xi

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

We then sum the table over the Xi dimension, resulting in a k-dimensional table. 
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

For i = m downto 1
• remove all the factors that mention Xi
• multiply those factors, getting a value for each 

combination of mentioned variables
• sum over Xi
• put this new factor into the factor set

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

This table is our new factor, and we put a term for it back into our set of factors.
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

For i = m downto 1
• remove all the factors that mention Xi
• multiply those factors, getting a value for each 

combination of mentioned variables
• sum over Xi
• put this new factor into the factor set

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

Once we’ve eliminated all the summations, we have the desired value.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Here’s a more complicated example, to illustrate the variable elimination algorithm 
in a more general case.  We have this big network that encodes a domain for 
diagnosing lung disease.  (Dyspnea, as I understand it, is shortness of breath).
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) Pr(t | v) Pr(v)A,B ,L,T ,S ,X ,V

∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)

Pr(x | a) Pr(t | v) Pr(v)
V
∑

A,B ,L,T ,S ,X
∑

f1 (t)

So, we start by eliminating V.  We gather the two terms that mention V and see that 
they also involve variable T.  So, we compute the product for each value of T, 
and summarize those in the factor f1 of T.



38

Lecture 16 • 38

One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) f1 (t)A,B ,L,T ,S ,X

∑

Now we can substitute that factor in for the summation, and remove the node from 
the network.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s) f1(t)

Pr(x | a)
X
∑

A,B ,L,T ,S
∑

1

The next variable to be eliminated is X.  There is actually only one term involving 
X, and it also involves variable A.  So, for each value of A, we compute the sum 
over X of P(x|a).  But wait!  We know what this value is!  If we fix a and sum 
over x, these probabilities have to add up to 1.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s) f1(t)
A,B ,L,T ,S
∑

So, rather than adding another factor to our expression, we can just remove the 
whole sum.  In general, the only nodes that will have an influence on the 
probability of D are its ancestors.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) Pr(a | t,l) f1(t) Pr(b | s) Pr(l | s) Pr(s)
S
∑

A,B ,L,T
∑

Now, it’s time to eliminate S.  We find that there are three terms involving S, and 
we gather them into the sum.  These three terms involve two other variables, B 
and L.  So we have to make a factor that specifies, for each value of B and L, the 
value of the sum of products.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) Pr(a | t,l) f1(t) Pr(b | s) Pr(l | s) Pr(s)
S
∑

A,B ,L,T
∑

f2 (b,l)

We’ll call that factor f_2 of b and l.
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One more example

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) Pr(a | t,l) f1 (t) f2 (b,l)
A,B ,L,T
∑

Now we can substitute that factor back into our expression.  We can also eliminate 
node S.  But in eliminating S, we’ve added a direct dependency between L and 
B (they used to be dependent via S, but now the dependency is encoded 
explicitly in f2(b).  We’ll show that in the graph by drawing a line between the 
two nodes.  It’s not exactly a standard directed conditional dependence, but it’s 
still useful to show that they’re coupled.
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One more example

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) f2 (b,l) Pr(a | t,l) f1(t)
T
∑

A,B ,L
∑

f3 (a,l)

Now we eliminate T.  It involves two terms, which themselves involve variables A 
and L.  So we make a new factor f3 of A and L.
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One more example

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f2 (b,l) f3(a,l)
A,B ,L
∑

We can substitute in that factor and eliminate T.  We’re getting close!
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One more example

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f2 (b,l) f3 (a,l)
L
∑

A ,B
∑

f4 (a,b)

Next we eliminate L.  It involves these two factors, which depend on variables A 
and B.  So we make a new factor, f4 of A and B, and substitute it in.  We 
remove node L, but couple A and B.
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One more example

Bronch
itis

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f4 (a,b)
A ,B
∑

At this point, we could just do the summations over A and B and be done.  But to 
finish out the algorithm the way a computer would, it’s time to eliminate variable B. 
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One more example

Bronch
itis

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f4 (a,b)
B
∑

A
∑

f5(a)

It involves both of our remaining terms, and it seems to depend on variables A and 
D.  However, in this case, we’re interested in the probability of a particular 
value, little d of D, and so the variable d is instantiated.  Thus, we can treat it as 
a constant in this expression, and we only need to generate a factor over a, 
which we’ll call f5 of a.  And we can now, in some sense, remove D from our 
network as well (because we’ve already factored it into our answer).
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One more example

chest

Abnrm

Pr(d) = f5(a)
A
∑

Finally, to get the probability that variable D has value little d,  we simply sum 
factor f5 over all values of a.  Yay!  We did it.
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Properties of Variable Elimination

Let’s see how the variable elimination algorithm performs, both in theory and in 
practice. 
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Properties of Variable Elimination

• Time is exponential in size of largest factor

First of all, it’s pretty easy to see that it runs in time exponential in the number of 
variables involved in the largest factor.  Creating a factor with k variables 
involves making a k+1 dimensional table.  If you have b values per variable, 
that’s a table of size b^(k+1).  To make each entry, you have to multiply at most 
n numbers, where n is the number of nodes.  We have to do this for each 
variable to be eliminated (which is usually close to n).  So we have something 
like time = O(n^2 b^k).
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Properties of Variable Elimination

• Time is exponential in size of largest factor
• Bad elimination order can generate huge factors

How big the factors are depends on the elimination order.  You’ll see in one of the 
recitation exercises just how dramatic the difference in factor sizes can be.  A 
bad elimination order can generate huge factors.
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Properties of Variable Elimination

• Time is exponential in size of largest factor
• Bad elimination order can generate huge factors
• NP Hard to find the best elimination order
• Even the best elimination order may generate large 

factors

So, we’d like to use the elimination order that generates the smallest factors.  
Unfortunately, it turns out to be NP hard to find the best elimination order. 
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Properties of Variable Elimination

• Time is exponential in size of largest factor
• Bad elimination order can generate huge factors
• NP Hard to find the best elimination order
• Even the best elimination order may generate large 

factors
• There are reasonable heuristics for picking an 

elimination order (such as choosing the variable 
that results in the smallest next factor)

At least, there are some fairly reasonable heuristics for choosing an elimination 
order.  It’s usually done dynamically.  So, rather than fixing the elimination 
order in advance, as we suggested in the algorithm description, you can pick the 
next variable to be eliminated depending on the situation.  In particular, one 
reasonable heuristic is to pick the variable to eliminate next that will result in 
the smallest factor.  This greedy approach won’t always be optimal, but it’s not 
usually too bad.
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Properties of Variable Elimination

• Time is exponential in size of largest factor
• Bad elimination order can generate huge factors
• NP Hard to find the best elimination order
• Even the best elimination order may generate large 

factors
• There are reasonable heuristics for picking an 

elimination order (such as choosing the variable 
that results in the smallest next factor)

• Inference in polytrees (nets with no cycles) is linear 
in size of the network (the largest CPT)

There is one case where Bayes net inference in general, and the variable elimination 
algorithm in particular is fairly efficient, and that’s when the network is a 
polytree.  A polytree is a network with no cycles.  That is, a network in which, 
for any two nodes, there is only one path between them.  In a polytree, inference 
is linear in the size of the network, where the size of the network is defined to be 
the size of the largest conditional probability table (or exponential in the 
maximum number of parents of any node).  In a polytree, the optimal 
elimination order is to start at the root nodes, and work downwards, always 
eliminating a variable that no longer has any parents.  In doing so, we never 
introduce additional connections into the network.
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Properties of Variable Elimination

• Time is exponential in size of largest factor
• Bad elimination order can generate huge factors
• NP Hard to find the best elimination order
• Even the best elimination order may generate large 

factors
• There are reasonable heuristics for picking an 

elimination order (such as choosing the variable 
that results in the smallest next factor)

• Inference in polytrees (nets with no cycles) is linear 
in size of the network (the largest CPT)

• Many problems with very large nets have only small 
factors, and thus efficient inference

So, inference in polytrees is efficient, and even in many large non-polytree
networks, it’s possible to keep the factors small, and therefore to do inference 
relatively efficiently.
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Properties of Variable Elimination

• Time is exponential in size of largest factor
• Bad elimination order can generate huge factors
• NP Hard to find the best elimination order
• Even the best elimination order may generate large 

factors
• There are reasonable heuristics for picking an 

elimination order (such as choosing the variable 
that results in the smallest next factor)

• Inference in polytrees (nets with no cycles) is linear 
in size of the network (the largest CPT)

• Many problems with very large nets have only small 
factors, and thus efficient inference

When the network is such that the factors are, of necessity, large, we’ll have to turn 
to a different class of methods.
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Sampling

Another  strategy, which is a theme that comes up also more and more  in AI 
actually, is to say, well, we didn't really want the  right answer anyway.  Let's try 
to do an approximation.  And  you can also show that it's computationally hard 
to get an  approximation that's within epsilon of the answer that you  want, but 
again that doesn't keep us from trying. 
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

So, the  other thing that we can do is the stochastic  simulation or sampling.  In 
sampling, what  we do is we look at the root nodes of our graph, and  attached to 
this root node is some probability that A is  going to be true, right?  Maybe it's 
.4.  So we flip a coin that comes up heads with probability .4 and see if we get 
true or false. 
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

…

TTFT

DCBA

•Flip a coin where P(T)=0.4, assume 
we get T, use that value for A

We flip our coin, let's  say, and we get true for A -- this time.  And now, given the  
assignment of true to A, we look in the conditional probability table for B given 
A = true, and that gives us a probability for B.
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

…

TTFT

DCBA

•Flip a coin where P(T)=0.4, assume 
we get T, use that value for A

•Given A=T, lookup P(B|A=T) and flip  
a coin with that prob., assume we get 
F

Now, we flip a coin with that probability.  Say we get False.  We enter that into the 
table.
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

…

TTFT

DCBA

•Flip a coin where P(T)=0.4, assume 
we get T, use that value for A

•Given A=T, lookup P(B|A=T) and flip  
a coin with that prob., assume we get 
F

•Similarly for C and D

We do the same thing for C, and let’s say we get True.
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

…

TTFT

DCBA

•Flip a coin where P(T)=0.4, assume 
we get T, use that value for A

•Given A=T, lookup P(B|A=T) and flip  
a coin with that prob., assume we get 
F

•Similarly for C and D

Now, we look in the CPT for D given B and C, for the case where B is false and C 
is true, and we flip a coin with that probability, in order to get a value for D.
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

…

TTFT

DCBA

•Flip a coin where P(T)=0.4, assume 
we get T, use that value for A

•Given A=T, lookup P(B|A=T) and flip  
a coin with that prob., assume we get 
F

•Similarly for C and D

•We get one sample from joint 
distribution of these four vars

So, there's one sample from  the joint distribution of these four variables.  And you 
can  just keep doing this, all day and all night, and generate a big pile of 
samples, using that algorithm.  And now  you can ask various questions. 
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Sampling

To get approximate answer we can do stochastic simulation
(sampling).

A

B C

D

P(A) = 0.4

…

TTFT

DCBA

•Flip a coin where P(T)=0.4, assume 
we get T, use that value for A

•Given A=T, lookup P(B|A=T) and flip  
a coin with that prob., assume we get 
F

•Similarly for C and D

•We get one sample from joint 
distribution of these four vars

Estimate:

P*(D|A) = #D,A / #A

Let's say you want to  know the probability of D given A.  How would you answer -
- given all the examples -- what would you do to compute the  probability of D 
given A?  You would just count.  You’d count the number of cases in which A 
and D were true, and you’d divide that by the number of cases in which A was 
true, and that would give you an unbiased estimate of the probability of D given 
A.  The more samples, the more confidence you’d have that the estimated 
probability is close to the true one.
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Estimation

• Some probabilities are easier than others to 
estimate

It's going to turn out  that some probabilities are easier than other ones to  estimate. 
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Estimation

• Some probabilities are easier than others to 
estimate

• In generating the table, the rare events will not be 
well represented

Exactly because of the process we’re using to generate the samples, the majority of 
them will be the typical cases. Oh, it's someone with a  cold, someone with a 
cold, someone with a cold, someone with  a cold, someone with a cold, someone 
with malaria, someone  with a cold, someone with a cold.  So the rare  results 
are not going to come up very often.  And so doing  this sampling naively can 
make it really hard to estimate  the probability of a rare event.   If it's something  
that happens one in ten thousand times, well, you know for  sure you're going to 
need, some number of tens of  thousands of samples to get even a reasonable 
estimate of  that probability. 



68

Lecture 16 • 68

Estimation

• Some probabilities are easier than others to 
estimate

• In generating the table, the rare events will not be 
well represented

• P(Disease| spots-on-your-tongue, sore toe)

Imagine that you want to  estimate the probability of some disease given -- oh, I  
don't know -- spots on your tongue and a sore toe. Somebody walks   in and they 
have a really peculiar set of symptoms, and  you want to know what's the 
probability that they have some  disease. 



69

Lecture 16 • 69

Estimation

• Some probabilities are easier than others to 
estimate

• In generating the table, the rare events will not be 
well represented

• P(Disease| spots-on-your-tongue, sore toe)
• If spots-on-your-tongue and sore toe are not root 

nodes, you would generate a huge table but the 
cases of interest would be very sparse in the table

Well, if the symptoms are root nodes, it's easy.  If the symptoms  were root nodes, 
you could just assign the root nodes to  have their observed values and then 
simulate the rest of the network as before. 
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Estimation

• Some probabilities are easier than others to 
estimate

• In generating the table, the rare events will not be 
well represented

• P(Disease| spots-on-your-tongue, sore toe)
• If spots-on-your-tongue and sore toe are not root 

nodes, you would generate a huge table but the 
cases of interest would be very sparse in the table

But if the symptoms aren't root nodes  then if you do naïve sampling, you would 
generate a giant  table of samples, and you'd have to  go and look and say, gosh, 
how many cases do I have where  somebody has spots on their tongue and a sore 
toe; and the  answer would be, well, maybe zero or not very many. 
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Estimation

• Some probabilities are easier than others to 
estimate

• In generating the table, the rare events will not be 
well represented

• P(Disease| spots-on-your-tongue, sore toe)
• If spots-on-your-tongue and sore toe are not root 

nodes, you would generate a huge table but the 
cases of interest would be very sparse in the table

• Importance sampling lets you focus on the set of 
cases that are important to answering your 
question

There’s a technique called importance sampling, which allows you to draw 
examples from a distribution that’s going to be more helpful and then reweight
them so that you can still get an unbiased estimate of the desired conditional 
probability.  It’s a bit beyond the scope of this class to get into the details, but 
it’s an important and effective idea.
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Recitation Problem

• Do the variable elimination algorithm on the net 
below using the elimination order A,B,C (that is, 
eliminate node C first).  In computing P(D=d), what 
factors do you get?

• What if you wanted to compute the whole marginal 
distribution P(D)?

A B C D

Here’s the network we started with.  We used elimination order C, B, A (we 
eliminated A first).  Now we’re going to explore what happens when we 
eliminate the variables in the opposite order.  First, work on the case we did, 
where we’re trying to calculate the probability that node D takes on a particular 
value, little d.  Remember that little d is a constant in this case.  Now, do the 
case where we’re trying to find the whole distribution over D, so we don’t know 
a particular value for little d.



73

Lecture 16 • 73

Another Recitation Problem

A

IHGFEDCB

MLKJ

Find an elimination order that keeps the factors small 
for the net below, or show that there is no such 
order.

N O

P

Here’s a pretty complicated graph.  But notice that no node has more than 2 parents, 
so none of the CPTs are huge.  The question is, is this graph hard for variable 
elimination?  More concretely, can you find an elimination order that results 
only in fairly small factors?  Is there an elimination order that generates a huge 
factor? 
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The Last Recitation Problem (in this 
lecture)

Bayesian networks (or related models) are often 
used in computer vision, but they almost always 
require sampling.  What happens when you try to 
do variable elimination on a model like the grid 
below?

A B C D E

P Q R S T

K L M N O

F G H I J


