
1

Lecture 18 • 1

6.825 Techniques in Artificial Intelligence

Learning With Hidden Variables

• Why do we want hidden variables?

In this lecture, we’ll think about how to learn Bayes Nets with hidden variables.
We’ll start out by looking at why you’d want to have models with hidden
variables.

2

Lecture 18 • 2

6.825 Techniques in Artificial Intelligence

Learning With Hidden Variables

• Why do we want hidden variables?
• Simple case of missing data

Then, because the technique we’ll use for working with hidden variables is a bit
complicated. we’ll start by looking at a simpler problem, of estimating
probabilities when some of the data are missing.

3

Lecture 18 • 3

6.825 Techniques in Artificial Intelligence

Learning With Hidden Variables

• Why do we want hidden variables?
• Simple case of missing data
• EM algorithm

That will lead us to the EM algorithm, in general,

4

Lecture 18 • 4

6.825 Techniques in Artificial Intelligence

Learning With Hidden Variables

• Why do we want hidden variables?
• Simple case of missing data
• EM algorithm
• Bayesian networks with hidden variables

And we’ll finish by seeing how to apply it to bayes nets with hidden nodes, and
we’ll work a simple example of that in great detail.

5

Lecture 18 • 5

Hidden variables

Why would we ever want to learn a Bayesian network with hidden variables? One
answer is: because we might be able to learn lower-complexity networks that
way. Another is that sometimes such networks reveal interesting structure in
our data.

6

Lecture 18 • 6

Hidden variables

E3

E1

E2

E4

Consider a situation in which you can observe a whole bunch of different evidence
variables, E1 through En. Maybe they’re all the different symptoms that a
patient might have. Or maybe they represent different movies and whether
someone likes them.

7

Lecture 18 • 7

Hidden variables

E3

E1

E2

E4

O(2n) parameters

Without the cause,
all the evidence is
dependent on
each other

If those variables are all conditionally dependent on one another, then we’d need a
highly connected graph that’s capable of representing the entire joint
distribution between the variables. Because the last node has n-1 parents, it will
take on the order of 2^n parameters to specify the conditional probability tables
in this network.

8

Lecture 18 • 8

Hidden variables

Cause

E1 E2
En…

Cause is unobservable

E3

E1

E2

E4

O(2n) parameters

Without the cause,
all the evidence is
dependent on
each other

But, in some cases, we can get a considerably simpler model by introducing an
additional “cause” node. It might represent the underlying disease state that was
causing the patients’ symptoms or some division of people into those who like
westerns and those who like comedies.

9

Lecture 18 • 9

Hidden variables

Cause

E1 E2
En…

O(n) parameters

Cause is unobservable

E3

E1

E2

E4

O(2n) parameters

Without the cause,
all the evidence is
dependent on
each other

In the simpler model, the evidence variables are conditionally independent given the
causes. That means that it would only require on the order of n parameters to
describe all the CPTs in the network, because at each node, we just need a table
of size 2 (if the cause is binary; or k if the cause can take on k values), and one
(or k-1) parameter to specify the probability of the cause.

10

Lecture 18 • 10

Hidden variables

Cause

E1 E2
En…

O(n) parameters

Cause is unobservable

E3

E1

E2

E4

O(2n) parameters

Without the cause,
all the evidence is
dependent on
each other

So, what if you think there’s a hidden cause? How can you learn a network with
unobservable variables?

11

Lecture 18 • 11

Missing Data

• Given two variables, no independence
relations

01

10

H0

00

00

00

11

11

BA

We’ll start out by looking at a very simple case. Imagine that you have two binary
variables A and B, and you know they’re not independent. So you’re just trying
to estimate their joint distribution. Ordinarily, you’d just count up how many
were true, true; how many were false, false; and so on, and divide by the total
number of data cases to get your maximum likelihood probability estimates.

12

Lecture 18 • 12

Missing Data

• Given two variables, no independence
relations

• Some data are missing

01

10

H0

00

00

00

11

11

BA

But in our case, some of the data are missing. If a whole case were missing, there
wouldn’t be much we could do about it; there’s no real way to guess what it
might have been that will help us in our estimation process. But if some
variables in a case are filled in, and others are missing, then we’ll see how to
make use of the variables that are filled in and how to get a probability
distribution on the missing data.

13

Lecture 18 • 13

Missing Data

• Given two variables, no independence
relations

• Some data are missing
• Estimate parameters in joint

distribution

01

10

H0

00

00

00

11

11

BA

Here, in our example, we have 8 data points, but one of them is missing a value for
B.

14

Lecture 18 • 14

Missing Data

• Given two variables, no independence
relations

• Some data are missing
• Estimate parameters in joint

distribution
• Data must be missing at random

01

10

H0

00

00

00

11

11

BA

In order for the methods we’ll talk about here to be of use, the data have to be
missing at random. That means that the fact that a data item is missing is
independent of the value it would have had. So, for instance, if you didn’t take
somebody’s blood pressure because he was already dead, then that reading
would not be missing at random! But if the blood-pressure instrument had
random failures, unrelated to the actual blood pressure, then that data would be
missing at random.

15

Lecture 18 • 15

Ignore it

Estimated Parameters

01

10

H0

00

00

00

11

11

BA

2/71/7B

1/73/7~B

A~A

.285.143B

.143.429~B

A~A

The simplest strategy of all is to just ignore any cases that have missing values. In
our example, we’d count the number of cases in each bin and divide by 7 (the
number of complete cases).

16

Lecture 18 • 16

Ignore it

Estimated Parameters

01

10

H0

00

00

00

11

11

BA

2/71/7B

1/73/7~B

A~A

.285.143B

.143.429~B

A~A

logPr(DM) = log(Pr(D,H = 0 |M) + Pr(D,H =1 |M))
= 3log.429 + 2log.143+ 2log.285 + log(.429 + .143)
= −9.498

It’s easy, and it gives us a log likelihood score of –9.498. Whether that’s good or
not remains to be seen. We’ll have to see what results we get with other
methods.

17

Lecture 18 • 17

Ignore it

Estimated Parameters

01

10

H0

00

00

00

11

11

BA

2/71/7B

1/73/7~B

A~A

.285.143B

.143.429~B

A~A

logPr(DM) = log(Pr(D,H = 0 |M) + Pr(D,H =1 |M))
= 3log.429 + 2log.143+ 2log.285 + log(.429 + .143)
= −9.498

Note that, in order to compute the log likelihood of the actual data (which is what
we’re trying to maximize), we’ll need to marginalize out the hidden variable H.
We accomplish that by summing over both of its values.

18

Lecture 18 • 18

Recitation Problem

Show the remaining steps required to get from this
expression

to a number for the log likelihood of the observed
data given the model.

Explain any assumptions you might have had to
make.

logPr(DM) = log(Pr(D,H = 0 |M) + Pr(D,H =1 |M))

I skipped a couple of steps in showing you my computation of the log likelihood on
the previous slide. Please fill them in and show what assumptions have to be
made along the way.

19

Lecture 18 • 19

Fill in With Best Value

Estimated Parameters

01

10

0

00

00

00

11

11

BA

Another strategy would be to fill in the missing value with the value that makes the
log likelihood (of the actual data) biggest.

20

Lecture 18 • 20

Fill in With Best Value

Estimated Parameters

01

10

00

00

00

00

11

11

BA

2/81/8B

1/84/8~B

A~A

.25.125B

.125.5~B

A~A

In this case, that value is 0. Once you fill in the missing value, you can estimate the
probabilities using the standard counting procedure.

21

Lecture 18 • 21

Fill in With Best Value

Estimated Parameters

01

10

00

00

00

00

11

11

BA

2/81/8B

1/84/8~B

A~A

.25.125B

.125.5~B

A~A

logPr(DM) = log(Pr(D,H = 0 |M)+ Pr(D,H =1 |M)
= 3log.5+ 2log.125 + 2log.25 + log(.5 + .125)
= −9.481

That gives us a model with a log likelihood of –9.481, which is an improvement
over –9.498, which was the value of the previous model.

22

Lecture 18 • 22

Fill in With Distribution

01

10

H0

00

00

00

11

11

BA

Filling in the missing data point with a particular value might be a bit too extreme.
After all, we can’t usually tell from the data exactly what that value should be,
so it makes sense to fill in a “soft” assignment for that value, somehow.

23

Lecture 18 • 23

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

Ideally, we’d like to fill in that value using our knowledge of the joint distribution
of the variables. But we were hoping to use the filled-in value to compute the
joint distribution! So what do we do?

24

Lecture 18 • 24

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

We’ll look at an iterative procedure that alternates between filling in the missing
data with a distribution and estimating a new joint probability distribution.

25

Lecture 18 • 25

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

.25.25B

.25.25~B

A~Aθ0

So, let’s just start by initializing our joint to the uniform 0.25 distribution.

26

Lecture 18 • 26

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

.25.25B

.25.25~B

A~Aθ0

Pr(H D,θ0) = Pr(H |D6,θ0)
= Pr(B |¬A,θ0)
= Pr(¬A,B |θ0) /Pr(¬A |θ0)
= .25 /0.5
= 0.5

Then, we can compute a probability distribution over the missing variable H.

27

Lecture 18 • 27

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

.25.25B

.25.25~B

A~Aθ0

Pr(H D,θ0) = Pr(H |D6,θ0)
= Pr(B |¬A,θ0)
= Pr(¬A,B |θ0) /Pr(¬A |θ0)
= .25 /0.5
= 0.5

First, we note that, under the assumption that the data cases are independent given
the model, the value of a missing variable can only depend on observed data in
the same case, case 6.

28

Lecture 18 • 28

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

.25.25B

.25.25~B

A~Aθ0

Pr(H D,θ0) = Pr(H |D6,θ0)
= Pr(B |¬A,θ0)
= Pr(¬A,B |θ0) /Pr(¬A |θ0)
= .25 /0.5
= 0.5

Since the missing variable is B and the observed one is not A, we just need the
probability of B given not A,

29

Lecture 18 • 29

Fill in With Distribution

Guess a distribution over A,B and
compute a distribution over H

01

10

H0

00

00

00

11

11

BA

.25.25B

.25.25~B

A~Aθ0

Pr(H D,θ0) = Pr(H |D6,θ0)
= Pr(B |¬A,θ0)
= Pr(¬A,B |θ0) /Pr(¬A |θ0)
= .25 /0.5
= 0.5

which we can calculate easily from the distribution.

30

Lecture 18 • 30

Fill in With Distribution

Use distribution over H to compute
better distribution over A,B

01

10

0, 0.5
1, 0.5

0

00

00

00

11

11

BA

Now we can fill in our missing data with a distribution: it has value 0 with
probability 0.5 and value 1 with probability 0.5.

31

Lecture 18 • 31

Fill in With Distribution

Use distribution over H to compute
better distribution over A,B

Maximum likelihood estimation using
expected counts

01

10

0, 0.5
1, 0.5

0

00

00

00

11

11

BA

Given those values we can re-estimate the parameters in our model. We’ll do
counting, as before, but this time, the 6th data case will be counted as 1/2 an
instance of 00 and 1/2 an instance of 01. You can think of these counts as
expected values of the true count, based on the uncertainty in the actual value of
H.

32

Lecture 18 • 32

Fill in With Distribution

Use distribution over H to compute
better distribution over A,B

Maximum likelihood estimation using
expected counts

01

10

0, 0.5
1, 0.5

0

00

00

00

11

11

BA

2/81.5/8B

1/83.5/8~B

A~A
θ1

.25.1875B

.125.4375~B

A~A

Given the expected counts, we can calculate a new model, theta 1.

33

Lecture 18 • 33

Fill in With Distribution

Use new distribution over AB to get a
better distribution over H

01

10

0

00

00

00

11

11

BA

θ1

Pr(H D,θ1) = Pr(¬A,B |θ1) /Pr(¬A |θ1)
= .1875 /.625
= 0.3

.25.1875B

.125.4375~B

A~A

Now, given our new distribution theta 1, we can do a better job of estimating a
probability distribution over H. Our new estimate is that H is true with
probability 0.3.

34

Lecture 18 • 34

Fill in With Distribution

Use distribution over H to compute
better distribution over A,B

01

10

0, 0.7
1, 0.3

0

00

00

00

11

11

BA

2/81.3/8B

1/83.7/8~B

A~A
θ2

.25.1625B

.125.4625~B

A~A

We plug the new estimate into the data set, compute new expected counts, and get a
new model, theta 2.

35

Lecture 18 • 35

Fill in With Distribution

Use new distribution over AB to get a
better distribution over H

01

10

0

00

00

00

11

11

BA

θ2

Pr(H D,θ2) = Pr(¬A,B |θ2) /Pr(¬A |θ2)
= .1625 /.625
= 0.26

.25.1625B

.125.4625~B

A~A

Given theta 2, we now estimate the probability of H being true to be 0.26.

36

Lecture 18 • 36

Fill in With Distribution

Use distribution over H to compute
better distribution over A,B

01

10

0, 0.74
1, 0.26

0

00

00

00

11

11

BA

2/81.26/8B

1/83.74/8~B

A~A
θ3

.25.1575B

.125.4675~B

A~A

And that estimate leads us to a new theta 3.

37

Lecture 18 • 37

Increasing Log-Likelihood

.25.25B

.25.25~B

A~Aθ0

θ1

.25.1875B

.125.4375~B

A~A

θ2

.25.1625B

.125.4625~B

A~A

θ3

.25.1575B

.125.4675~B

A~A

logPr(D |θ3) = −9.4514

logPr(D |θ2) = −9.4524

logPr(D |θ1) = −9.4760

logPr(D |θ0) = −10.3972

We can iterate this process until it converges or we get tired, or something. One
important thing to notice is that the log-likelihood is increasing on each
iteration.

38

Lecture 18 • 38

Increasing Log-Likelihood

.25.25B

.25.25~B

A~Aθ0

θ1

.25.1875B

.125.4375~B

A~A

θ2

.25.1625B

.125.4625~B

A~A

θ3

.25.1575B

.125.4675~B

A~A

logPr(D |θ3) = −9.4514

logPr(D |θ2) = −9.4524

logPr(D |θ1) = −9.4760

logPr(D |θ0) = −10.3972
ignore: -9.498

best val: -9.481

And even after one iteration, our model is better than the ones we derived by
ignoring case 6 or by plugging in the best value for H.

39

Lecture 18 • 39

Deriving the EM Algorithm

That iterative process that we just did is an instance of a general procedure, called
the EM algorithm. It’s called EM for “expectation-maximization”, though the
way we’ll look at it, it’s more like “maximization-maximization”.

40

Lecture 18 • 40

Deriving the EM Algorithm

• Want to find to maximize θ Pr(D |θ)

So, our goal is to find the theta that maximizes the probability of data given theta.

41

Lecture 18 • 41

Deriving the EM Algorithm

• Want to find to maximize

• Instead, find , to maximize

θ Pr(D |θ)

˜ P

g(θ, ˜ P) = ˜ P (H)log(Pr(D,H |θ) / ˜ P (H))
H
∑

= E ˜ P logPr(D,H |θ) − log ˜ P (H)

θ

The problem is that it’s hard to maximize that directly. Instead, some clever
statistician found this expression, g of theta and P tilde. We’re going to try to
maximize it instead.

42

Lecture 18 • 42

Deriving the EM Algorithm

• Want to find to maximize

• Instead, find , to maximize

θ Pr(D |θ)

˜ P

g(θ, ˜ P) = ˜ P (H)log(Pr(D,H |θ) / ˜ P (H))
H
∑

= E ˜ P logPr(D,H |θ) − log ˜ P (H)

θ

P tilde is a probability distribution over the hidden variables.

43

Lecture 18 • 43

Deriving the EM Algorithm

• Want to find to maximize

• Instead, find , to maximize

• Alternate between
• holding fixed and optimizing
• holding fixed and optimizing

θ Pr(D |θ)

˜ P

g(θ, ˜ P) = ˜ P (H)log(Pr(D,H |θ) / ˜ P (H))
H
∑

= E ˜ P logPr(D,H |θ) − log ˜ P (H)

θ

θ
θ
˜ P

˜ P

So, how are we going to find an optimum of g? We can do that by holding one
argument fixed and finding an optimum with respect to the other, and repeating
that procedure over and over.

44

Lecture 18 • 44

Deriving the EM Algorithm

• Want to find to maximize

• Instead, find , to maximize

• Alternate between
• holding fixed and optimizing
• holding fixed and optimizing

• g has same local and global optima as

θ Pr(D |θ)

˜ P

g(θ, ˜ P) = ˜ P (H)log(Pr(D,H |θ) / ˜ P (H))
H
∑

= E ˜ P logPr(D,H |θ) − log ˜ P (H)

θ

θ
θ
˜ P

˜ P

Pr(D |θ)

So, in our algorithm, we’ll hold theta (the model) fixed and find the best distribution
over the hidden variables. Then we’ll hold the distribution over the hidden
variables fixed and find the best model.

45

Lecture 18 • 45

Deriving the EM Algorithm

• Want to find to maximize

• Instead, find , to maximize

• Alternate between
• holding fixed and optimizing
• holding fixed and optimizing

• g has same local and global optima as

θ Pr(D |θ)

˜ P

g(θ, ˜ P) = ˜ P (H)log(Pr(D,H |θ) / ˜ P (H))
H
∑

= E ˜ P logPr(D,H |θ) − log ˜ P (H)

θ

θ
θ
˜ P

˜ P

Pr(D |θ)

The clever statisticians that invented the g function proved that it has the same local
and global optima with respect to theta as the likelihood function that we really
want to optimize. So, working with g should get us the answer we need, and it’s
easier to work with than the straight likelihood.

46

Lecture 18 • 46

EM Algorithm

• Pick initial θ0

So, here’s the algorithm in a bit more detail. We start by picking some initial
model, theta 0.

47

Lecture 18 • 47

EM Algorithm

• Pick initial
• Loop until apparently converged

θ0

Then, we loop until we think the process has converged, alternating between two
steps.

48

Lecture 18 • 48

EM Algorithm

• Pick initial
• Loop until apparently converged

•

θ0

˜ P t+1(H) = Pr(H | D,θ t)

In the first step, we set our distribution over the hidden variables to be the
probability of the hidden variables given the observed data and the current
model.

49

Lecture 18 • 49

EM Algorithm

• Pick initial
• Loop until apparently converged

•
•

θ0

˜ P t+1(H) = Pr(H | D,θ t)
θt+1 = argmax

θ
E ˜ P t+1

logPr(D,H |θ)

In the second step, we find the maximum likelihood model for the “expected data”,
using the distribution over H to generate expected counts for the different cases.

50

Lecture 18 • 50

EM Algorithm

• Pick initial
• Loop until apparently converged

•
•

• Monotonically increasing likelihood

θ0

˜ P t+1(H) = Pr(H | D,θ t)
θt+1 = argmax

θ
E ˜ P t+1

logPr(D,H |θ)

It’s possible to prove that this algorithm generates models with monotonically
increasing likelihood. So, things always get better.

51

Lecture 18 • 51

EM Algorithm

• Pick initial
• Loop until apparently converged

•
•

• Monotonically increasing likelihood
• Convergence is hard to determine due to plateaus

θ0

˜ P t+1(H) = Pr(H | D,θ t)
θt+1 = argmax

θ
E ˜ P t+1

logPr(D,H |θ)

It can be hard to tell when EM has converged, though. Sometimes, the models just
get a tiny bit better for a long time, and you think the process is done, and
there’s a sudden increase in likelihood. There’s no real way to know whether
that’s going to happen or not.

52

Lecture 18 • 52

EM Algorithm

• Pick initial
• Loop until apparently converged

•
•

• Monotonically increasing likelihood
• Convergence is hard to determine due to plateaus
• Problems with local optima

θ0

˜ P t+1(H) = Pr(H | D,θ t)
θt+1 = argmax

θ
E ˜ P t+1

logPr(D,H |θ)

Another problem with EM is that it is subject to local minima. Sometimes it
converges quite effectively to the maximum model that’s near the one it started
with, but there’s a much better model somewhere else in the space. For this
reason, it can be important either to start from multiple different initial models,
or to initialize your model based on some insight into the domain.

53

Lecture 18 • 53

EM for Bayesian Networks

• D: observable variables

Okay, so now let’s look at how to apply EM to Bayesian networks. Our data will be
a set of cases of observations of some observable variables, D.

54

Lecture 18 • 54

EM for Bayesian Networks

• D: observable variables
• H: values of hidden variables in each case

Our hidden variables will actually be the values of the hidden nodes in each case.
(So, if we have 10 data cases and a network with one hidden node, we’ll really
have 10 hidden variables, or missing pieces of data).

55

Lecture 18 • 55

EM for Bayesian Networks

• D: observable variables
• H: values of hidden variables in each case
• Assume structure is known

We’ll assume that the structure is known.

56

Lecture 18 • 56

EM for Bayesian Networks

• D: observable variables
• H: values of hidden variables in each case
• Assume structure is known
• Goal: maximum likelihood estimation of CPTs

And we want to find the CPTs that maximize the probability of the observed data D.

57

Lecture 18 • 57

EM for Bayesian Networks

• D: observable variables
• H: values of hidden variables in each case
• Assume structure is known
• Goal: maximum likelihood estimation of CPTs

• Initialize CPTs to anything (with no 0’s)

So, we’ll initialize the CPTs to have any values we want (without any zeros, unless
we’re absolutely certain that they are true in our domain).

58

Lecture 18 • 58

EM for Bayesian Networks

• D: observable variables
• H: values of hidden variables in each case
• Assume structure is known
• Goal: maximum likelihood estimation of CPTs

• Initialize CPTs to anything (with no 0’s)
• Fill in the data set with distribution over values for

hidden vars

We can fill in the data set with distributions over values for the hidden variables.

59

Lecture 18 • 59

EM for Bayesian Networks

• D: observable variables
• H: values of hidden variables in each case
• Assume structure is known
• Goal: maximum likelihood estimation of CPTs

• Initialize CPTs to anything (with no 0’s)
• Fill in the data set with distribution over values for

hidden vars
• Estimate CPTs using expected counts

And then estimate the CPTs using expected counts.

60

Lecture 18 • 60

Filling in the data

• Distribution over H factors over
the M data cases

˜ P t+1(H) = Pr(H | D,θ t)

= Pr(H m | Dm ,θ t)
m
∏

When it’s time to compute the probability distribution over H given D and theta, it
seems hard, because we’ll have m different hidden variables: one for the value
of node H in each of the m data cases.

61

Lecture 18 • 61

Filling in the data

• Distribution over H factors over
the M data cases

• We really just need to compute a distribution over
each individual hidden variable

˜ P t+1(H) = Pr(H | D,θ t)

= Pr(H m | Dm ,θ t)
m
∏

Luckily, this distribution factors out. Each hidden variable depends only on the
observed variables in its case, given the model. So, we really only have to
worry about coming up with the individual distributions over each hidden
variable in each case.

62

Lecture 18 • 62

Filling in the data

• Distribution over H factors over
the M data cases

• We really just need to compute a distribution over
each individual hidden variable

• Each factor is a call to Bayes net inference

˜ P t+1(H) = Pr(H | D,θ t)

= Pr(H m | Dm ,θ t)
m
∏

Now, how can we compute Pr(Hm | dm, theta)? That’s just a call to a bayes net
inference procedure. We’re given all the parameters of the network, and an
assignment to some of the variables, D. We need to find a probability
distribution over the other variables, H. We can use variable elimination, or any
other technique available to us.

63

Lecture 18 • 63

EM for BN: Simple Case

H

D1 D2 Dn

Let’s just consider a simple case with a single hidden node (things get a bit more
complicated when we have more than one; but not qualitatively different).
We’ll use the same network structure we talked about at the beginning of this
lecture: one hidden cause directly controlling a whole set of possible effects.
And for further simplicity, we’ll assume all the nodes are binary.

64

Lecture 18 • 64

EM for BN: Simple Case

H

D1 D2 Dn

.2011

.7000

.3010

.5111

.2111

.6101

.1100

.2010

.9011

Dn…D2D1 Pr(H m | Dm ,θt)
Bayes net
inference

So, given a model, theta, we can use bayes net inference to compute, for each case
in our data set, the probability that H would be true, given the values of the
observed variables.

65

Lecture 18 • 65

EM for BN: Simple Case

H

D1 D2 Dn

.2011

.7000

.3010

.5111

.2111

.6101

.1100

.2010

.9011

Dn…D2D1 Pr(H m | Dm ,θt)

E# (H) = Pr(H m | Dm ,θ t)
m
∑

= 3.7

Bayes net
inference

Then, we can use these distributions to compute expected counts. So, for instance,
to get the expected number of times H is true, we’d just add up with
probabilities of H being true in each case.

66

Lecture 18 • 66

EM for BN: Simple Case

H

D1 D2 Dn

.2011

.7000

.3010

.5111

.2111

.6101

.1100

.2010

.9011

Dn…D2D1 Pr(H m | Dm ,θt)

E# (H ∧D2) = Pr(H m | Dm ,θ t)I(D2
m)

m
∑

= .9 + .2 + .2 + .5 + .3+ .2
= 2.3

E# (H) = Pr(H m | Dm ,θ t)
m
∑

= 3.7

Bayes net
inference

To get the expected number of times that H and D2 are true, we find all the cases in
which D2 is true, and add up their probabilities of H being true.

67

Lecture 18 • 67

EM for BN: Simple Case

H

D1 D2 Dn

.2011

.7000

.3010

.5111

.2111

.6101

.1100

.2010

.9011

Dn…D2D1 Pr(H m | Dm ,θt)

E# (H ∧D2) = Pr(H m | Dm ,θ t)I(D2
m)

m
∑

= .9 + .2 + .2 + .5 + .3+ .2
= 2.3

E# (H) = Pr(H m | Dm ,θ t)
m
∑

= 3.7

Pr(D2 H) ≈ 2.3/3.7 = .6216

Bayes net
inference

Re-estimate

θ

Those two expected counts will let us re-estimate theta. The component of theta
that represents the probability of D2 given H will be estimated by dividing the
two counts we just computed.

68

Lecture 18 • 68

EM for BN: Worked Example

H

A B

Now, to make everything concrete, we’ll go all the way through a very simple
example. Let’s assume there’s a hidden cause, H, and two observable variables,
A and B.

69

Lecture 18 • 69

EM for BN: Worked Example

H

A B

1

0

1

0

B

41

11

10

60

#A Pr(Hm |Dm ,θt)

I’ve summarized our data set in this table, indicating that we saw the combination
0,0 6 times, the combination 0,1 once, etc. If we have a domain with more data
cases than possible assignments to the observable variables, it’s usually more
efficient to store the data this way. But quite typically we never see the same
data case more than once, and most of them we never see at all!

70

Lecture 18 • 70

EM for BN: Worked Example

H

A B

1

0

1

0

B

41

11

10

60

#A

θ1 = Pr(H)
θ2 = Pr(A |H)
θ3 = Pr(A |¬H)
θ4 = Pr(B |H)
θ5 = Pr(B |¬H)

Pr(Hm |Dm ,θt)

We’ll let the thetas be these probabilities, which make up all the CPTs for our
simple network.

71

Lecture 18 • 71

EM for BN: Worked Example

H

A B

1

0

1

0

B

41

11

10

60

#A

θ1 = Pr(H)
θ2 = Pr(A |H)
θ3 = Pr(A |¬H)
θ4 = Pr(B |H)
θ5 = Pr(B |¬H)

Pr(Hm |Dm ,θt)

Note that we have a lot of cases of 00 and of 11, but not many with 01 or 10. We
can guess that the hidden node is going to play the role of choosing whether we
output a 00 or a 11. And that there are roughly two reasonable solutions: A and
B are both on when H is off, or A and B are both on when H is on. Let’s see
what learning does for us.

72

Lecture 18 • 72

EM for BN: Initial Model

H

A B

Pr(H) = 0.4
Pr(AH) = 0.55

Pr(A¬H) = 0.61
Pr(BH) = 0.43

Pr(B¬H) = 0.52

1

0

1

0

B

41

11

10

60

#A Pr(Hm |Dm ,θt)

I picked an initial model to be this set of probabilities, which are sort of near, but
not equal to 0.5. We’ll see why I did this, later on.

73

Lecture 18 • 73

Iteration 1: Fill in data

H

A B

Pr(H) = 0.4
Pr(AH) = 0.55

Pr(A¬H) = 0.61
Pr(BH) = 0.43

Pr(B¬H) = 0.52

1

0

1

0

B

.3341

.4211

.3910

.4860

#A Pr(Hm |Dm ,θt)

Given that initial model, we can compute the probability of H given A and B, for
every combination of A and B, and put those probabilities into our table.

74

Lecture 18 • 74

Iteration 1: Re-estimate Params

H

A B

Pr(H) = 0.42
Pr(AH) = 0.35

Pr(A¬H) = 0.46
Pr(BH) = 0.34

Pr(B¬H) = 0.47

1

0

1

0

B

.3341

.4211

.3910

.4860

#A Pr(Hm |Dm ,θt)

Now we can re-estimate the parameters of the model using the expected values of
H. Here’s what we get (I used a computer program to do this, so it’s probably
right; but I wrote the program, so maybe not…)

75

Lecture 18 • 75

Iteration 2: Fill in Data

H

A B

Pr(H) = 0.42
Pr(AH) = 0.35

Pr(A¬H) = 0.46
Pr(BH) = 0.34

Pr(B¬H) = 0.47

1

0

1

0

B

.2841

.3911

.3910

.5260

#A Pr(Hm |Dm ,θt)

Now we can fill in new values of the data. We can start to see a tendency for H to
want to be on when A and B are off, and vice versa.

76

Lecture 18 • 76

Iteration 2: Re-estimate params

H

A B

Pr(H) = 0.42
Pr(AH) = 0.31

Pr(A¬H) = 0.50
Pr(BH) = 0.30

Pr(B¬H) = 0.50

1

0

1

0

B

.2841

.2811

.3910

.5260

#A Pr(Hm |Dm ,θt)

Now we recomputed the probabilities in the model. They’re moving away from
their initial values.

77

Lecture 18 • 77

Iteration 5

H

A B

Pr(H) = 0.46
Pr(AH) = 0.09

Pr(A¬H) = 0.69
Pr(BH) = 0.09

Pr(B¬H) = 0.69

1

0

1

0

B

.0541

.3111

.3110

.7960

#A Pr(Hm |Dm ,θt)

Now we skip ahead to iteration 5. Here are the missing-data distributions and the
model. The tendency for H to be on when A and B are off, and for it to be off
when they are on is considerably strengthened, as we can see in both
distributions.

78

Lecture 18 • 78

Iteration 10

H

A B

Pr(H) = 0.52
Pr(AH) = 0.03

Pr(A¬H) = 0.83
Pr(BH) = 0.03

Pr(B¬H) = 0.83

1

0

1

0

B

.00141

.18311

.18310

.97160

#A Pr(Hm |Dm ,θt)

After 10 iterations, the process is pretty well converged. The prior probability of H
is just over 50 percent (which makes sense, since about half of the data cases are
00, when it is almost certainly on, and it has some chance of being on in a
couple of the other cases).

79

Lecture 18 • 79

Iteration 10

H

A B

Pr(H) = 0.52
Pr(AH) = 0.03

Pr(A¬H) = 0.83
Pr(BH) = 0.03

Pr(B¬H) = 0.83

1

0

1

0

B

.00141

.18311

.18310

.97160

#A Pr(Hm |Dm ,θt)

The CPTs for A and B are the same, which also makes sense, since the data is
completely symmetric for A and B. When H is on, A and B are almost certainly
off. When H is off, A and B have a moderately high probability of being on.

80

Lecture 18 • 80

Increasing Log Likelihood

-18

-17

-16

-15

-14

-13

-12

0 5 10

iteration

If we plot the log likelihood of the observed data given the model as a function of
the iteration, we can see that it increases monotonically. It flattens out
somewhere around iteration 8, and I don’t think it’s going to improve much after
that.

81

Lecture 18 • 81

Increasing Log Likelihood

-18

-17

-16

-15

-14

-13

-12

0 5 10

iteration

You can see that, although it’s always improving, the amount of improvement per
iteration is variable.

82

Lecture 18 • 82

Increasing Log Likelihood

-18

-17

-16

-15

-14

-13

-12

0 5 10

iteration

near .5
all params .5

To illustrate the problems with local optima, even with such a simple model as this,
I tried to solve the same problem, with the same data set, but initializing all of
the parameters in the model to 0.5. Because of the symmetry in the parameters
and the symmetry in the data set, parameters theta 2 through theta 5 remain at
0.5 forever. It takes just a little bit of asymmetry to tip the iterative process
toward one or the other reasonable solution. This is an unstable equilibrium,
which is unlikely to arise in practice. But just to be safe, it’s often wise to
initialize your parameters to be nearly, but not quite uniform.

83

Lecture 18 • 83

Increasing Log Likelihood

-18

-17

-16

-15

-14

-13

-12

0 5 10 15 20

iteration

near .5
all params .5
near 0

Finally, just for fun, I tried initializing all the parameters near (but not equal to 0).
The log likelihood of that model is terrible (something like –35), but then it
jumps up to around –16, which is where the completely symmetric model was.
Eventually, it manages to break the symmetry, and come up to the same
asymptote as the first run.

84

Lecture 18 • 84

EM in BN issues

• With multiple hidden nodes, take advantage of
conditional independencies

When you have multiple hidden nodes, it’s important to take advantage of
conditional independencies among the hidden nodes given the observables, to
avoid having to compute joint distributions over many hidden variables.

85

Lecture 18 • 85

EM in BN issues

• With multiple hidden nodes, take advantage of
conditional independencies

• Lots of tricks to speed up computation of expected
counts

The way we described this algorithm, including filling in all of the partial counts, is
very inefficient. There are lots of methods, and a fair amount of current
research, devoted to making that process much more efficient.

86

Lecture 18 • 86

EM in BN issues

• With multiple hidden nodes, take advantage of
conditional independencies

• Lots of tricks to speed up computation of expected
counts

• If structure is unknown, add search operators to
add and delete hidden nodes

What if the structure of the network is unknown? Then we can do structure search,
but add to our repertoire of search steps the option of adding or deleting hidden
nodes. Then, given a structure, we can use EM to estimate the parameters, and
use them to compute a score on the final model.

87

Lecture 18 • 87

EM in BN issues

• With multiple hidden nodes, take advantage of
conditional independencies

• Lots of tricks to speed up computation of expected
counts

• If structure is unknown, add search operators to
add and delete hidden nodes

• There are clever ways of search with unknown
structure and hidden nodes

Another topic of current research is how to make search with both unknown
structure and hidden nodes more efficient by considering them both
simultaneously.

