
1

Lecture 22 • 1

6.825 Techniques in Artificial Intelligence

Reinforcement Learning

When we talked about MDPs, we assumed that we knew the agent’s reward
function, R, and a model of how the world works, expressed as the transition
probability distribution. In reinforcement learning, we would like an agent to
learn to behave well in an MDP world, but without knowing anything about R
or P when it starts out.

2

Lecture 22 • 2

6.825 Techniques in Artificial Intelligence

Reinforcement Learning

It’s called reinforcement learning because it’s related to early mathematical
psychology models of conditioning, or behavior learning, in animals.

3

Lecture 22 • 3

6.825 Techniques in Artificial Intelligence

Reinforcement Learning

• Exploration
• Q learning
• Extensions and examples

We’ll look at the issue of exploration, talk about Q-learning, which is one of
the most successful approaches to reinforcement learning, and then
consider some extensions and examples.

4

Lecture 22 • 4

Reinforcement Learning

What do you do when you don’t know how the world
works?

So, how should you behave when you don’t even know how the world
works?

5

Lecture 22 • 5

Reinforcement Learning

What do you do when you don’t know how the world
works?

One option:

One obvious strategy for dealing with an unknown world is to learn a model
of the world, and then solve it using known techniques.

6

Lecture 22 • 6

Reinforcement Learning

What do you do when you don’t know how the world
works?

One option:
• estimate R (reward function) and P (transition

function) from data

You all know how to do parameter estimation now, by counting the number
of times various events occur and taking ratios. So, you can estimate the
next-state distribution P(s’|s,a) by counting the number of times the agent
has taken action a in state s and looking at the proportion of the time that s’
has been the next state. Similarly, you can estimate R(s) just by averaging
all the rewards you’ve received when you were in state s.

7

Lecture 22 • 7

Reinforcement Learning

What do you do when you don’t know how the world
works?

One option:
• estimate R (reward function) and P (transition

function) from data
• solve for optimal policy given estimated R and P

Once you have estimated values for R and P, then you can use value
iteration to compute a policy that’s optimal, if not for the real world, for the
world described by the estimated model.

8

Lecture 22 • 8

Reinforcement Learning

What do you do when you don’t know how the world
works?

One option:
• estimate R (reward function) and P (transition

function) from data
• solve for optimal policy given estimated R and P

Of course, there’s a question of how long you should gather data to estimate
the model before it’s good enough to use to find a policy. One way to get
around this problem is to re-estimate the model on every step. Each time
you get a piece of experience, you update your model estimates. Then, you
run value iteration on the updated model. This might be too computationally
expensive; if so, you can run value iteration over the continually updated
model as a kind of background job, at whatever rate you can afford
computationally.

9

Lecture 22 • 9

Reinforcement Learning

What do you do when you don’t know how the world
works?

One option:
• estimate R (reward function) and P (transition

function) from data
• solve for optimal policy given estimated R and P

Another option:
• estimate a value function directly

This approach is sound, and in a lot of cases, it’s probably the right thing to
do. But, interestingly enough, it’s possible to find the optimal value function
without ever estimating the state transition probabilities directly. We’ll
investigate an algorithm for doing that.

10

Lecture 22 • 10

Bandit Problems

?

But first, let’s think about how the agent should choose its actions. In most
supervised learning problems, the agent is simply given a big collection of
data and asked to learn something from it. In reinforcement learning, there
is an interesting added dimension: the agent gets to choose its own actions
and, therefore, it has very direct influence on the data it will receive. Now
there are two, possibly opposing reasons for the agent to choose an action:
because it thinks the action will have a good result in the world, or because it
thinks the action will give it more information about how the world works.
Both of these things are valuable, and it’s interesting to think about how to
trade them off.

11

Lecture 22 • 11

Bandit Problems

?

One view of the very simplest reinforcement learning problem, where there’s
a single state, is as a bandit problem. Imagine you enter a casino with k
slot machines. Every time you pull an arm on a machine, it either pays off a
dollar or nothing. Assume that each machine has a hidden probability of
paying off, and that whenever you pull an arm, the outcome is independent
of previous outcomes and is determined by the hidden payoff probability.
This is called a k-armed-bandit problem, because, in English slang, slot
machines are sometimes called one-armed bandits (presumably because
they take all your money).

12

Lecture 22 • 12

Bandit Problems

?

Now, assume that I let you into the casino and tell you that you have 1000
chances to pull the arm of a machine, and that you should try to make as
much money as possible during that time. What should you do?

13

Lecture 22 • 13

Bandit Strategies
• switch on a loser

There are a lot of strategies, even for this simple problem. One of the first
ones that people studied was “switch on a loser”. It says that you should
pick one arm. As long as it keeps paying off, you should keep pulling it. As
soon as it loses, go to the next arm, and so on. It can be shown that this
strategy is better than behaving at random, but it’s not optimal!

14

Lecture 22 • 14

Bandit Strategies
• switch on a loser
• always choose the apparent best

Another strategy would be to keep estimates of the payoff probabilities of
each arm (by counting). Then, always choose the arm with the highest
estimated probability of paying off. The problem with this strategy, which
initially seems quite appealing, is that you might have initial bad luck with an
arm that is actually pretty good, and arrive at a very low estimate of its
probability of paying off. If this happens, you might never choose it again,
thus preventing yourself from discovering that it’s actually better than it
seems to be now.

15

Lecture 22 • 15

Bandit Strategies
• switch on a loser
• always choose the apparent best
• choose the apparent best 90% of the time;

choose randomly the other 10%
• consider both the amount of experience you’ve

had with each arm and the payoff
• etc…

Ultimately, the best strategies spend some time “exploring”: trying all the
arms to see what their probabilities are like, and some time exploiting: doing
the apparently best action to try to get reward. In general, the longer you
expect to live (the longer your horizon, in the finite horizon case, or the
closer your gamma is to 1, in the discounted case), the more time you
should devote to exploration, because the more you stand to lose by
converging too early to the wrong action.

16

Lecture 22 • 16

Bandit Strategies
• switch on a loser
• always choose the apparent best
• choose the apparent best 90% of the time;

choose randomly the other 10%
• consider both the amount of experience you’ve

had with each arm and the payoff
• etc…

Arms are like actions in a single-state MDP

So, how does this relate to reinforcement learning? Well, you can think of
the problem of choosing which action to take in a single-state MDP as being
equivalent to the problem of choosing which arm to pull (though the rewards
may have different distributions).

17

Lecture 22 • 17

Bandit Strategies
• switch on a loser
• always choose the apparent best
• choose the apparent best 90% of the time;

choose randomly the other 10%
• consider both the amount of experience you’ve

had with each arm and the payoff
• etc…

Arms are like actions in a single-state MDP

Imagine what this problem is like in a multi-state
MDP!

It gets even more complicated when you consider exploring a whole MDP.
Now, it’s as if you have a casino with many rooms, each room corresponding
to a state in the MDP. And each room has many arms, corresponding to the
actions available to the agent. Now, each time the agent pulls an arm, it
gets some immediate payoff. And then it gets teleported to another room!
according to a probability distribution that’s a function of the room and the
arm. It’s really hard to think of the best exploration strategy for problems like
this, and it’s really still open from a theoretical perspective how to do it.

18

Lecture 22 • 18

Q Function

A different way to write down the recursive value
function equation.

Assuming we have some way of choosing actions, now we’re going to focus
on finding a way to estimate the value function directly. For a long time,
people worked on methods of learning V* directly, but they ran into a variety
of problems. Then someone had the insight that if we just wrote the
equations for the optimal value function down in a slightly different way, it
would make learning much easier.

19

Lecture 22 • 19

Q Function

A different way to write down the recursive value
function equation.

Q*(s,a) is the expected discounted future reward for
starting in state s, taking action a, and continuing
optimally thereafter.

So, instead of trying to estimate V*, we’ll focus on a slightly different
function, called Q*. Q*(s,a) is the expected discounted future reward for
starting in state s, taking a as our first action, and then continuing optimally.
It’s like V*, except that it specifies the first action, and that action could
potentially be sub-optimal (we are going to compute Q* for each possible
action in each state).

20

Lecture 22 • 20

Q Function

A different way to write down the recursive value
function equation.

Q*(s,a) is the expected discounted future reward for
starting in state s, taking action a, and continuing
optimally thereafter.

Q*(s,a) = R(s) + γ Pr(′ s | s,a)max
′ a

′ s
∑ Q*(′ s , ′ a)

There’s a nice set of recursive equations for the Q values, just as there was
for V. The Q value of being in state s and taking action a is the immediate
reward, R(s), plus the discounted expected value of the future. We get the
expected value of the future by taking an expectation over all possible next
states, s’. In each state s’, we need to know the value of behaving optimally.
We can get that by choosing, in each s’, the action a’ that maximizes
Q*(s’,a’).

21

Lecture 22 • 21

Q Function

A different way to write down the recursive value
function equation.

Q*(s,a) is the expected discounted future reward for
starting in state s, taking action a, and continuing
optimally thereafter.

Q*(s,a) = R(s) + γ Pr(′ s | s,a)max
′ a

′ s
∑ Q*(′ s , ′ a)

π *(s) = argmax
a

Q*(s,a)

A convenient aspect of this approach is that if you know Q*, then it’s really
easy to compute the optimal action in a state. All you have to do is take the
action that gives the largest Q value in that state. (Back when we were using
V*, it required knowing the transition probabilities to compute the optimal
action, so this is considerably simpler. And it will be effective when the
model is not explicitly known).

22

Lecture 22 • 22

Q Learning

Now we can look at an algorithm called Q learning, which estimates the Q*
function directly, without estimating the transition probabilities. And, as we
saw on the previous slide, if we know Q*, then finding the best way to
behave is easy.

23

Lecture 22 • 23

Q Learning

A piece of experience in the world is s,a,r, ′ s

The learning algorithm deals with individual “pieces” of experience with the
world. One piece of experience is a set of the current state s, the chosen
action a, the reward r, and the next state s’. Each piece of experience will be
folded into the Q values, and then thrown away, so there is no accumulation
of old experience in memory.

24

Lecture 22 • 24

Q Learning

A piece of experience in the world is

• Initialize Q(s,a) arbitrarily

s,a,r, ′ s

We start, as in value iteration, by initializing the Q function arbitrarily. Zero is
usually a reasonable starting point.

25

Lecture 22 • 25

Q Learning

A piece of experience in the world is

• Initialize Q(s,a) arbitrarily
• After each experience, update Q:

s,a,r, ′ s

Q(s,a)← (1−α)Q(s,a) + αq(r, ′ s)

Now, after each experience, we update the Q function. The basic form of
the update looks like this. The parameter alpha is a learning rate; usually
it’s something like 0.1. So, we’re updating our estimate of Q(s,a) to be
mostly like our old value of Q(s,a), but adding in a new term that depends on
r and the new state. This kind of an update is essentially a running average
of the new terms received on each step. The smaller alpha is, the longer-
term the average is. With a small alpha, the system will be slow to
converge, but the estimates will not fluctuate very much due to the
randomness in the process. It is quite typical (and, in fact, required for
convergence), to start with a large-ish alpha, and then decrease it over time.

26

Lecture 22 • 26

Q Learning

A piece of experience in the world is

• Initialize Q(s,a) arbitrarily
• After each experience, update Q:

s,a,r, ′ s

Q(s,a)← (1−α)Q(s,a) + αq(r, ′ s)
q(r, ′ s) = r + γmax

′ a
Q(′ s , ′ a)

So, what is little q(r,s) going to be? You can think of it as an example of the
value of taking action a in state s. The actual reward, r, is a sample of the
expected reward R(s). And the actual next state, s’, is a sample from the
next state distribution. And the value of that state s’ is the value of the best
action we can take in it, which is the max over a’ of Q(s’,a’).

27

Lecture 22 • 27

Q Learning

A piece of experience in the world is

• Initialize Q(s,a) arbitrarily
• After each experience, update Q:

Guaranteed to converge to optimal Q if the world is
really an MDP

s,a,r, ′ s

Q(s,a)← (1−α)Q(s,a) + αq(r, ′ s)
q(r, ′ s) = r + γmax

′ a
Q(′ s , ′ a)

This algorithm is guaranteed to converge to Q*, the optimal Q function, if the
world is really an MDP, if we manage the learning rate correctly, and if we
explore the world in such a way that we never completely ignore some
actions. It’s kind of tricky to show that it converges, because there are really
two iterative processes going on here at once. One is the usual kind of
averaging we do, when we collect a lot of samples and try to estimate their
mean. The other is the dynamic programming iteration done by value
iteration, updating the value of a state based on the estimated values of its
successors. Both of those iterations are going on at once here, and the
algorithm is still guaranteed to work. Amazing.

28

Lecture 22 • 28

Lots of issues

• large or continuous state spaces

Although Q learning comes with a theoretical guarantee, it doesn’t come
close to solving all of our problems. Just like value iteration, it requires that
the states and actions be drawn from a small enough set that we can store
the Q function in a table. In many domains, we’ll have very large or even
continuous state spaces, making the direct representation approach
impossible. We can try to use a function approximator, such as a neural
network, to store the Q function, rather than a table. Such approaches are
no longer theoretically guaranteed to work, and they can be a bit tricky, but
sometimes they work very well.

29

Lecture 22 • 29

Lots of issues

• large or continuous state spaces
• slow convergence

Also, Q learning can sometimes be very slow to converge. There is a whole
set of more advanced techniques in reinforcement learning that are aimed at
addressing this problem.

30

Lecture 22 • 30

Lots of issues

• large or continuous state spaces
• slow convergence

Mostly used in large simulations

Because of the slow convergence, most of the applications of Q learning
have been in very large domains for which we actually know a model. The
domains are too large to solve directly using value iteration, though, so
instead we use the known model to build a simulation. Then, using Q
learning plus a function approximator, we learn to behave in the simulated
environment, which yields a good control policy for the original problem.

31

Lecture 22 • 31

Lots of issues

• large or continuous state spaces
• slow convergence

Mostly used in large simulations
• TD Gammon

The most striking success of reinforcement learning methods has been in
the TD gammon system for learning to play backgammon. This system
starts out not knowing anything about backgammon. It plays between 1 and
2 million games of backgammon against itself (that’s a lot of
backgammon!). It has learned to play backgammon so well that it can now
draw the human world-champion backgammon player. It is recognized by
humans as the expert in at least some aspects of the game, and the human
experts have begun playing differently in some situations because of moves
advocated by TD gammon.

32

Lecture 22 • 32

Lots of issues

• large or continuous state spaces
• slow convergence

Mostly used in large simulations
• TD Gammon
• Elevator scheduling

Another interesting example is elevator scheduling. In a skyscraper office
building with many floors and many elevators, there is a serious control
problem in deciding which elevators to send to which floors next. The input
to the system is the locations of the elevators and the set of all buttons that
have been pressed (both inside the elevators and outside, where people are
waiting to be picked up). Again, through learning in a simulation of the
building, the system learns to control the elevators, mapping the current
inputs to a direction for each elevator, which the goal of maximizing the
throughput of people through the system. The learned policies are
considerably more effective that the ones that are standardly built in by the
elevator companies.

33

Lecture 22 • 33

Lots of issues

• large or continuous state spaces
• slow convergence

Mostly used in large simulations
• TD Gammon
• Elevator scheduling

So, reinforcement learning is a promising technology, but there are a lot of
possible refinements that will have to be made before it has truly widespread
application.

