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Lecture 4 • 1 

6.825 Techniques in Artificial Intelligence 

Satisfiability and Validity 

Last time we talked about propositional logic. There's no better way to empty out a 
room than to talk about logic. So now, -- having gone to all that work of 
establishing syntax and semantics -- what might you actually want to do with 
some descriptions that are written down in logic? There are two things that we 
might want to automatically determine about a sentence of logic. One is 
satisfiability, and another is validity. 
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6.825 Techniques in Artificial Intelligence 

Satisfiability and Validity 
Satisfiable sentence: there exists a truth value 

assignment for the variables that makes the 
sentence true (truth value = t). 

• Algorithm? 

Last time we talked about a way to determine whether a sentence is satisfiable. 
Can you remember what it is? You know an algorithm for this. 
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6.825 Techniques in Artificial Intelligence 

Satisfiability and Validity 
Satisfiable sentence: there exists a truth value 

assignment for the variables that makes the 
sentence true (truth value = t). 

• Algorithm? 
• Try all the possible assignments to see if one 

works. 

Try all possible assignments and see if there is one that makes the sentence true. 
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6.825 Techniques in Artificial Intelligence 

Satisfiability and Validity 
Satisfiable sentence: there exists a truth value 

assignment for the variables that makes the 
sentence true (truth value = t). 

• Algorithm? 
• Try all the possible assignments to see if one 

works. 
Valid sentence: all truth value assignments for the 

variables make the sentence true. 
• Algorithm? 

And how do you tell if a sentence is valid?  What’s the algorithm? 
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6.825 Techniques in Artificial Intelligence 

Satisfiability and Validity 
Satisfiable sentence: there exists a truth value 

assignment for the variables that makes the 
sentence true (truth value = t). 

• Algorithm? 
• Try all the possible assignments to see if one 

works. 
Valid sentence: all truth value assignments for the 

variables make the sentence true. 
• Algorithm? 
• Try all possible assignments and check that they 

all work. 

Try all possible assignments and be sure that all of them make the sentence true. 
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6.825 Techniques in Artificial Intelligence 

Satisfiability and Validity 
Satisfiable sentence: there exists a truth value 

assignment for the variables that makes the 
sentence true (truth value = t). 

• Algorithm? 
• Try all the possible assignments to see if one 

works. 
Valid sentence: all truth value assignments for the 

variables make the sentence true. 
• Algorithm? 
• Try all possible assignments and check that they 

all work. 
Are there better algorithms than these? 

We're going to spend some time talking about better ways to compute satisfiability 
and better ways to compute validity. 
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Satisfiability Problems 

Many problems can be expressed as a list of constraints. 
Answer is assignment to variables that satisfy all the 
constraints. 

There are lots of satisfiability problems in the real world. They end up being 
expressed essentially as lists of constraints, where you're trying to find some 
assignment of values to variables that satisfy the constraints. 
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Satisfiability Problems 

Many problems can be expressed as a list of constraints. 
Answer is assignment to variables that satisfy all the 
constraints. 

Examples: 
• Scheduling people to work in shifts at a hospital 

– Some people don’t work at night 
– No one can work more than x hours a week 
– Some pairs of people can’t be on the same shift 
– Is there assignment of people to shifts that satisfy all 

constraints? 

One example is scheduling nurses to work shifts in a hospital. Different people 
have different constraints, some don't want to work at night, no individual can 
work more than this many hours out of that many hours, these two people don't 
want to be on the same shift, you have to have at least this many per shift and 
so on. So you can often describe a setting like that as a bunch of constraints on 
a set of variables. 
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Satisfiability Problems 

Many problems can be expressed as a list of constraints. 
Answer is assignment to variables that satisfy all the 
constraints. 

Examples: 
• Scheduling people to work in shifts at a hospital 

– Some people don’t work at night 
– No one can work more than x hours a week 
– Some pairs of people can’t be on the same shift 
– Is there assignment of people to shifts that satisfy all 

constraints? 
• Finding bugs in programs [Daniel Jackson, MIT] 

– Write logical specification of, e.g. air traffic controller 
– Write assertion “two airplanes on same runway at 

same time” 
– Can these be satisfied simultaneously? 

There's an interesting application of satisfiability that's going on here at MIT in the 
Lab for Computer Science. Professor Daniel Jackson's interested in trying to 
find bugs in programs. That's a good thing to do, but (as you know!) it’s hard 
for humans to do reliably, so he wants to get the computer to do it automatically. 

One way to do it is to essentially make a small example instance of a program. So 
an example of a kind of program  that he might want to try to find a bug in 
would be an air traffic controller. The air traffic controller has all these rules 
about how it works, right?  So you could write down the logical specification of 
how the air traffic control protocol works, and then you could write down 
another sentence that says, "and there are two airplanes on the same runway at 
the same time." And then you could see if there is a satisfying assignment; 
whether there is a configuration of airplanes and things that actually satisfies the 
specifications of the air traffic control protocol and also has two airplanes on 
the same runway at the same time. And if you can find -- if that whole 
sentence is satisfiable, then you have a problem in your air traffic control 
protocol. 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

Satisfiability problems are typically written as sets of constraints, and that means 
that they're often written – just about always written -- in conjunctive normal 
form. 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C) 

A sentence is written in conjunctive normal form looks like ((A or B or not C) and 
(B or D) and (not A) and (B or C or F)). Or something like that. 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

• s  a clause 

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C) 

(A ∨ B ∨¬C) i

Its outermost structure is a conjunction. It's a conjunction of multiple units. These 
units are called "clauses." 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

• s  a clause, which is a disjunction 
of literals 

• A,  B,  and ¬ C are literals 

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C) 

(A ∨ B ∨¬C) i

A clause is the disjunction of many things. The units that make up a clause are 
called literals. 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

• s  a clause, which is a disjunction 
of literals 

• A,  B,  and ¬ C are literals, each of which is a 
variable or the negation of a variable. 

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C) 

(A ∨ B ∨¬C) i

And a literal  is either a variable or the negation of a variable. 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

• s  a clause, which is a disjunction 
of literals 

• A,  B,  and ¬ C are literals, each of which is a 
variable or the negation of a variable. 

• Each clause is a requirement which must be 
satisfied and it has different ways of being 
satisfied. 

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C) 

(A ∨ B ∨¬C) i

So you get an expression where the negations are pushed in as tightly as possible, 
then you have ors, then you have ands. This is like saying, that every 
assignment has to meet each of a set of requirements. You can think of each 
clause as a requirement. So somehow, the first clause has to be satisfied, and it 
has different ways that it  can be satisfied, and the second one has to be satisfied, 
and the third one has to be satisfied, and so on. 
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Conjunctive Normal Form 

Satisfiability problems are written as conjunctive 
normal form (CNF) formulas: 

• s  a clause, which is a disjunction 
of literals 

• A,  B,  and ¬ C are literals, each of which is a 
variable or the negation of a variable. 

• Each clause is a requirement which must be 
satisfied and it has different ways of being 
satisfied. 

• Every sentence in propositional logic can be 
written in CNF 

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C) 

(A ∨ B ∨¬C) i

You can take any sentence in propositional logic and write it in conjunctive normal 
form. 
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Converting to CNF 

Here’s the procedure for converting sentences to conjunctive normal form. 
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Converting to CNF 

1. Eliminate arrows using definitions 

The first step is to eliminate single and double arrows using their definitions. 
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Converting to CNF 

1. Eliminate arrows using definitions 
2. Drive in negations using De Morgan’s Laws 

ϕφϕφ ¬∧¬≡∨¬ )( 
ϕφϕφ ¬∨¬≡∧¬ )( 

The next step is to drive in negation. We do it using DeMorgan's Laws. You might 
have seen them in a digital logic class. Not (phi or psi) is equivalent to (not phi 
and not psi). And, Not (phi and psi) is equivalent to (not phi or not psi). 

So if you have a negation on the outside, you can push it in and change the 
connective from and to or, or from or to and. 



20

Lecture 4 • 20 

Converting to CNF 

1. Eliminate arrows using definitions 
2. Drive in negations using De Morgan’s Laws 

3. Distribute or over and 

A ∨ (B ∧ C) ≡ ( A ∨ B) ∧ (A ∨ C) 

ϕφϕφ ¬∧¬≡∨¬ )( 
ϕφϕφ ¬∨¬≡∧¬ )( 

The third step is to distribute or over and. That is, if we have (A or (B and C)) we 
can rewrite it as (A or B) and (A or C). 

You can prove to yourself, using the method of truth tables, that the distribution rule 
(and DeMorgan’s laws) are valid. 
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Converting to CNF 

1. Eliminate arrows using definitions 
2. Drive in negations using De Morgan’s Laws 

3. Distribute or over and 

4. Every sentence can be converted to CNF, but it 
may grow exponentially in size 

A ∨ (B ∧ C) ≡ ( A ∨ B) ∧ (A ∨ C) 

ϕφϕφ ¬∧¬≡∨¬ )( 
ϕφϕφ ¬∨¬≡∧¬ )( 

One problem with conjunctive normal form is that, although you can convert any 
sentence to conjunctive normal form, you might do it at the price of an 
exponential increase in the size of the expression. Because if you have A and B 
and C OR D and E and F, you end up making the cross- product of all of those 
things. 

For now, we’ll think about satisfiability problems, which are generally fairly 
efficiently converted into CNF. But on homework 1, we’ll have to think a lot 
about the size of expressions in CNF. 
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CNF Conversion Example 

(A ∨ B) → (C → D) 

Here’s an example of converting a sentence to CNF. 
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CNF Conversion Example 

1. Eliminate arrows 

(A ∨ B) → (C → D) 

)()( DCBA ∨¬∨∨¬ 

First we get rid of both arrows, using the rule that says “A implies B” is equivalent 
to “not A or B”. 
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CNF Conversion Example 

1. Eliminate arrows 

2. Drive in negations 

(A ∨ B) → (C → D) 

)()( DCBA ∨¬∨∨¬ 

(¬A ∧¬B) ∨ (¬C ∨ D) 

Then we drive in the negation using deMorgan’s law. 



25

Lecture 4 • 25 

CNF Conversion Example 

1. Eliminate arrows 

2. Drive in negations 

3. Distribute 

(A ∨ B) → (C → D) 

)()( DCBA ∨¬∨∨¬ 

(¬A ∧¬B) ∨ (¬C ∨ D) 

(¬A ∨¬C ∨ D) ∧ (¬B ∨¬C ∨ D) 

Finally, we dstribute or over and to get the final CNF expression. 
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Simplifying CNF 

We’re going to be doing a lot of manipulations of CNF sentences, and we’ll 
sometimes end up with these degenerate cases. Let’s understand what they 
mean. 
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Simplifying CNF 

• An empty clause is false (no options to satisfy) 

An empty clause is false. In general, a disjunction with no disjuncts is false. 
In order to make such an expression true, you have to satisfy one of the 
options, and if there aren’t any, you can’t make it true. 
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Simplifying CNF 

• An empty clause is false (no options to satisfy) 
• A sentence with no clauses is true (no 

requirements) 

A sentence with no clauses is true. In general a conjunction with no 
conjuncts is true. In order to make such an expression true, you have to 
make all of its conditions true, and if there aren’t any, then it’s just true. 
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Simplifying CNF 

• An empty clause is false (no options to satisfy) 
• A sentence with no clauses is true (no 

requirements) 
• A sentence containing an empty clause is false 

(there is an impossible requirement) 

A sentence containing an empty clause is false. This is because the empty 
clause is false, and false conjoined with anything else is always false. 
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Recitation Problems - I 

Convert to CNF 
1. 

2. 

3. 

4. 

5. 

6. 

(A → B) → C 

A → (B → C) 

(A → B) ∨ (B → A) 

¬(¬P → (P → Q)) 

(P → (Q → R)) → (P → (R → Q)) 

(P → Q) → ((Q → R) → (P → R)) 

Please do at least two of these problems before going on with the rest of the 
lecture (and do the rest of them before recitation). 
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Algorithms for Satisfiability 

Given a sentence in CNF, how can we prove it is 
satisfiable? 

How can we prove that a CNF sentence is satisfiable? By showing that 
there is a satisfying assignment, that is, an assignment of truth values to 
variables that makes the sentence true. So, we have to try to find a 
satisfying assignment. 
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Algorithms for Satisfiability 

Given a sentence in CNF, how can we prove it is 
satisfiable? 

Enumerate all possible assignments and see if 
sentence is true for any of them. he number 
of possible assignments grows exponentially in the 
number of variables. 

But, t

One strategy would be to enumerate all possible assignments, and evaluate 
the sentence in each one. But the number of possible assignments grows in 
the number of variables, and it would be way too slow. 
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Algorithms for Satisfiability 

Given a sentence in CNF, how can we prove it is 
satisfiable? 

Enumerate all possible assignments and see if 
sentence is true for any of them. he number 
of possible assignments grows exponentially in the 
number of variables. 

Consider a search tree where at each level we 
consider the possible assignments to one variable, 
say P.  On one branch, we assume P is f and on the 
other that it is t. 

But, t

Let's make a search tree. We'll start out by considering the possible 
assignments that we can make to the variable P. We can assign it true or 
false. 
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Algorithms for Satisfiability 

Given a sentence in CNF, how can we prove it is 
satisfiable? 

Enumerate all possible assignments and see if 
sentence is true for any of them. he number 
of possible assignments grows exponentially in the 
number of variables. 

Consider a search tree where at each level we 
consider the possible assignments to one variable, 
say P.  On one branch, we assume P is f and on the 
other that it is t. 

Given an assignment for a variable, we can simplify 
the sentence and then repeat the process for 
another variable. 

But, t

Now, if I assign P "false", that simplifies my problem a little bit. You could 
say, before I made any variable assignments, I had to find an assignment to 
all the variables that would satisfy this set of requirements. Having assigned 
P the value "false", now there is a simpler set of requirements on the rest of 
the assignment. 
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Assign and Simplify Example 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

So let's think about how we can simplify a sentence based on a partial 
assignment. Here’s a complicated sentence. Let’s actually figure out how to 
simplify the sentence in this case, and then we can write down the general 
rule. 
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Assign and Simplify Example 

If we assign P=f, we get simpler set of constraints 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

OK, so if I assign P the value "false", what happens? 
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Assign and Simplify Example 

If we assign P=f, we get simpler set of constraints 
• simplifies to 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

P ∨ Q Q 

The first clause (P or Q) simplifies to Q. If we force P to be false, then the 
only possible way to satisfy is requirement is for Q to be true. 
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Assign and Simplify Example 

If we assign P=f, we get simpler set of constraints 
• simplifies to 
• simplifies to 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

P ∨ Q Q 

P ∨¬Q ∨ R ¬Q ∨ R 

Similarly, (P or not Q or R) simplifies to (not Q or R). 
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Assign and Simplify Example 

If we assign P=f, we get simpler set of constraints 
• simplifies to 
• simplifies to 
• is satisfied and can be removed 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

P ∨ Q Q 

P ∨¬Q ∨ R ¬Q ∨ R 

TP ¬∨¬ 

The clause (not P or not T) can be removed entirely. Once we’ve decided to 
make P false, we’ve satisfied this clauses (made it true) and we don’t have 
to worry about it any more. 
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Assign and Simplify Example 

If we assign P=f, we get simpler set of constraints 
• simplifies to 
• simplifies to 
• is satisfied and can be removed 
• simplifies to 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

P ∨ Q Q 

P ∨¬Q ∨ R ¬Q ∨ R 

TP ¬∨¬ 

P ∨ S S 

P or S simplifies to S. 
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Assign and Simplify Example 

If we assign P=f, we get simpler set of constraints 
• simplifies to 
• simplifies to 
• is satisfied and can be removed 
• simplifies to 

Result is 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

P ∨ Q Q 

P ∨¬Q ∨ R ¬Q ∨ R 

TP ¬∨¬ 

P ∨ S S 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) ∧ (S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

So, now we have a resulting expression that doesn’t mention P, and is 
simpler than the one we started with. 
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Given a CNF sentence phi and a literal U (remember a literal is either a 
variable or a negated variable), 
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Assign and Simplify 

Given a CNF sentence φ and a literal U 
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Assign and Simplify 

Given a CNF sentence φ and a literal U 
• Delete all clauses containing U (they’re satisfied) 

delete all clauses from Phi that contain U (because they’re satisfied) 
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Assign and Simplify 

Given a CNF sentence φ and a literal U 
• Delete all clauses containing U (they’re satisfied) 
• Delete ¬U from all remaining clauses (because U 

is not an option) 

delete not U from all remaining clauses (because U is not an option) 
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Assign and Simplify 

Given a CNF sentence φ and a literal U 
• Delete all clauses containing U (they’re satisfied) 
• Delete ¬U from all remaining clauses (because U 

is not an option) 

We denote the simplified sentence by φ(U) 
Works for positive and negative literals U 

We’ll call the resulting sentence phi of u. 
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Search Example 

Here’s a big example, illustrating a tree-structured process of searching for a 
satisfying assignment by assigning values to variables and simplifying the 
resulting expressions. 
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Search Example 

φ(¬P) φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

We’ll start with our previous example formula. And we’ll arbitrarily pick the 
variable P to start with and consider what happens if we assign it to have the 
value f. 
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Search Example 

φ(¬P) φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

We do an “assign and simplify” operation, and end up with the smaller 
expression we got when we did this example before. 
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Search Example 

φ(Q) 

φ(¬P) 

φ(¬Q) 

φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

Now, let’s pick Q as our variable, and try assigning it to f. 
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Search Example 

φ(Q) 

φ(¬P) 

φ(¬Q) 

φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

When we assign and simplify, we find that the resulting expression has an 
empty clause, which means that it’s false. That means that, given the 
assignments we’ve made on this path of the tree (P false and Q false), the 
sentence is unsatisfiable. There’s no reason to continue on with this branch, 
so we’ll have to back up and try a different choice somewhere. 
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Search Example 

φ(Q) 

φ(¬P) 

φ(¬Q) 

φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

Let’s go up to our most recent decision and try assigning Q to be t. 
Simplifying gives us this expression. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

φ(¬P) 

φ(¬Q) 

φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

Now, let’s try assigning R to be f. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

φ(¬P) 

φ(¬Q) 

φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

Again, when we assign and simplify, we get an empty clause, signaling 
failure. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

φ(¬P) 

φ(¬Q) 

φ(P) 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(T ) ∧ (S) ∧ (¬S ∨ T ) 

So, we go back up, assign R to be t and simplify. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

φ(¬P) 

φ(¬Q) 

φ(P) 

The assignment for a literal 
appearing by itself in a clause 
is forced: true for a positive 
literal, false for a negative 
literal. 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(T ) ∧ (S) ∧ (¬S ∨ T ) 

At this point, we can see a way to be smarter about choosing an assignment 
to try first. As we saw with Q and with R, if a literal appears by itself in a 
clause, its assignment is forced: true for a positive literal, false for a 
negative literal.  If you try the negation of that assignment, you’ll reach a 
dead end and have to back up. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

φ(S) 

φ(¬P) 

φ(¬Q) 

φ(P) 

The assignment for a literal 
appearing by itself in a clause 
is forced: true for a positive 
literal, false for a negative 
literal. 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(T ) ∧ (S) ∧ (¬S ∨ T ) 

(T ) ∧ (T ) 

So, we’ll be smarter and try assigning S to t, which gives us a simple 
sentence. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

True 

φ(T) 

φ(S) 

φ(¬P) 

φ(¬Q) 

φ(P) 

The assignment for a literal 
appearing by itself in a clause 
is forced: true for a positive 
literal, false for a negative 
literal. 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(T ) ∧ (S) ∧ (¬S ∨ T ) 

(T ) ∧ (T ) 

Again, we’re forced to assign T to t, yielding a final result of “True”. 
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Search Example 

φ(Q) 

φ(¬R) φ(R) 

True 

φ(T) 

φ(S) 

φ(¬P) 

φ(¬Q) 

φ(P) 

The assignment for a literal 
appearing by itself in a clause 
is forced: true for a positive 
literal, false for a negative 
literal. 

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T ) 
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) 
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T ) 

() ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T ) 

(R) ∧ (T ∨¬R) ∧ (S) 
∧(T ∨ R ∨ S) ∧ (¬S ∨ T ) 

(T ) ∧ (S) ∧ (¬S ∨ T ) 

(T ) ∧ (T ) 

Now, this path through the tree represents the assignment: P false, Q true, R 
true, S true, and T true. And because , given those assignments, the 
sentence simplified to “true”, that is a satisfying assignment. 
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Another Example 

Since T occurs only 
positively, it might 
as well be assigned 
to true 

(T ∨ X ) ∧ (¬S ∨ T ) ∧ (S ∨ X ) 

Here’s one more small example to illustrate another way to make searching 
for a satisfying assignment more directed. Consider this sentence. The 
variable T occurs only positively. Although we don’t have to make it true, we 
don’t lose anything by doing so. 
So, if you have a sentence in which a variable occurs always positively, you 
should just set it to true. If a variable occurs always negatively, you should 
just set it to false. 
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Another Example 

True 

φ(S) 

φ(T) 

Since T occurs only 
positively, it might 
as well be assigned 
to true 

(T ∨ X ) ∧ (¬S ∨ T ) ∧ (S ∨ X ) 

(S ∨ X ) 

Once we assign T to true, all of the clauses containing it drop out, and we’re 
left with a very simple problem to finish. 
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DPLL(φ) 

All the insight we gained from the previous example can be condensed into 
an algorithm.  It’s called DPLL, which stands for the names of the inventors 
of the algorithm (Davis, Putnam, Logeman and Loveland). It’s very well 
described in a paper by Cook, which we have linked into the syllabus (the 
Cook paper also describes the GSAT and WalkSAT algorithms that we’ll talk 
about later). 
The DPLL algorithm takes a CNF sentence phi as input, and returns true if it 
is satisfiable and false otherwise. It works recursively. 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

If phi is empty, then return true. Our work is done! 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

• If there is an empty clause in φ, return false 
(reject falsity) 

If there is an empty clause in phi, then return false. Remember than an 
empty clause is false, and once we have one false clause, the whole 
sentence is false. 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

• If there is an empty clause in φ, return false 
(reject falsity) 

• If there is a unit clause U in φ, return DPLL(φ(U)) 
(accept the inevitable) 

Unit clause has only one literal 

If there is a unit clause containing literal U in phi (remember, a unit clause 
has only one literal, and so its assignment is forced), then assign the literal, 
simplify, and call DPLL recursively on the simplified sentence. 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

• If there is an empty clause in φ, return false 
(reject falsity) 

• If there is a unit clause U in φ, return DPLL(φ(U)) 
(accept the inevitable) 

• If there is a pure literal U in φ, return DPLL(φ(U)) 
(go with the flow) 

Unit clause has only one literal 
Pure literal only occurs positively or negatively 

If there is a pure literal U in phi (that is, the variable in the literal U always 
occurs either positively or negatively in phi), then assign the literal, simplify, 
and call DPLL recursively on the simplified sentence. 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

• If there is an empty clause in φ, return false 
(reject falsity) 

• If there is a unit clause U in φ, return DPLL(φ(U)) 
(accept the inevitable) 

• If there is a pure literal U in φ, return DPLL(φ(U)) 
(go with the flow) 

• For some variable v 
(take a guess) 

Unit clause has only one literal 
Pure literal only occurs positively or negatively 

If none of the previous conditions hold, then we have to take a guess. 
Choose any variable v occurring in phi. 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

• If there is an empty clause in φ, return false 
(reject falsity) 

• If there is a unit clause U in φ, return DPLL(φ(U)) 
(accept the inevitable) 

• If there is a pure literal U in φ, return DPLL(φ(U)) 
(go with the flow) 

• For some variable v 
(take a guess) 
– If DPLL(φ(v)) then return true 

Unit clause has only one literal 
Pure literal only occurs positively or negatively 

Try assigning it to be true: simplify and call DPLL recursively on the 
simplified sentence. If it returns true, then the sentence is satisfiable, and 
we can return true as well. 
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DPLL(φ) 

• If φ is empty, return true 
(embrace truth) 

• If there is an empty clause in φ, return false 
(reject falsity) 

• If there is a unit clause U in φ, return DPLL(φ(U)) 
(accept the inevitable) 

• If there is a pure literal U in φ, return DPLL(φ(U)) 
(go with the flow) 

• For some variable v 
(take a guess) 
– If DPLL(φ(v)) then return true 
– Else return DPLL(φ(¬ v)) 

Unit clause has only one literal 
Pure literal only occurs positively or negatively 

If not, then try assigning v to be false, simplify, and call DPLL recursively. 
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Recitation Problems - II 

How would you modify DPLL so it: 
• returns a satisfying assignment if there is one, 

and false otherwise 
• returns all satisfying assignments 

Would using DPLL to return all satisfying 
assignments be any more efficient than simply 
listing all the assignments and checking to see 
whether they’re satisfying? ot? Why or why n

Please do these problems before going on with the lecture. 
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Making good guesses 

MOMS heuristic for choosing variable v: 

Maximum number of Occurrences, 
Minimum Sized clauses 

What’s a good way to choose the variable to assign? There are lots of 
different heuristics. One that seems to work out reasonably well in practice 
is the “MOMS” heuristic: choose the variable that has the maximum number 
of occurrences in minimum sized clauses. 
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Making good guesses 

MOMS heuristic for choosing variable v: 

Maximum number of Occurrences, 
Minimum Sized clauses 

• Choose highly constrained variables 
• If you’re going to fail, fail early 

The idea is that such variables are highly constrained. If you are going to 
fail, you’d like to fail early (that is, if you’ve made some bad assignments that 
will lead to a false Phi, you might as well know that before you make a lot of 
other assignments and grow out a huge tree). 
So, intuitively, assigning values to the variables that are most constrained is 
more likely to reveal problems soon. 
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The correctness of a variety of algorithms can be described in terms of 
soundness and completeness 

Lecture 4 • 72 

Soundness and Completeness 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 

An algorithm is sound if, whenever it gives you an answer, it’s correct. 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 
• Complete – it always gives you an answer 

An algorithm is complete if it always gives you an answer. 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 
• Complete – it always gives you an answer 

DPLL is sound and complete 

The DPLL algorithm, being a systematic search algorithm that only skips 
assignments that are sure to be unsatisfactory, is sound and complete. But 
sometimes it can be slow! 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 
• Complete – it always gives you an answer 

DPLL is sound and complete 

We will now consider some algorithms for 
satisfiability that are sound but not complete. 

Now we’re going to consider a couple of algorithms for solving satisfiability 
problems that have been found to be very effective in practice. They are 
sound, but not complete. 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 
• Complete – it always gives you an answer 

DPLL is sound and complete 

We will now consider some algorithms for 
satisfiability that are sound but not complete. 

• If they give an answer, it is correct 

So, if they give an answer, it’s correct. 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 
• Complete – it always gives you an answer 

DPLL is sound and complete 

We will now consider some algorithms for 
satisfiability that are sound but not complete. 

• If they give an answer, it is correct 
• But, they may not give an answer 

But they may not always give an answer 
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Soundness and Completeness 

Properties of satisfiability algorithms: 
• Sound – if it gives you an answer, it’s correct 
• Complete – it always gives you an answer 

DPLL is sound and complete 

We will now consider some algorithms for 
satisfiability that are sound but not complete. 

• If they give an answer, it is correct 
• But, they may not give an answer 
• They may be faster than any complete algorithm 

And, on average, they tend to be much faster than any complete algorithm. 
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The GSAT algorithm is an example of an ‘iterative improvement’ algorithm, 
such as those discussed in section 4.4 of the book.  It does hill-climbing in 
the space of complete assignments, with random restarts. 
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GSAT 

Hill climbing in the space of total assignments 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 

We start with a random assignment to the variables, and then move to the 
“neighboring” assignment with the least cost. The assignments that are 
neighbors of the current assignment are those that can be reached by 
“flipping” a single bit of the current assignment. “Flipping” a bit is changing 
the assignment of one variable from true to false, or from false to true. 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 
Cost(assignment) = number of unsatisfied clauses 

The cost of an assignment is the number of clauses in the sentence that are 
unsatisfied under the assignment. 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 
Cost(assignment) = number of unsatisfied clauses 

Loop n times 

Okay. Here’s the algorithm in pseudocode. We’re going to do n different 
hill-climbing runs, 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 
Cost(assignment) = number of unsatisfied clauses 

Loop n times 
• Randomly choose assignment A 

starting from different randomly chosen initial assignments. 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 
Cost(assignment) = number of unsatisfied clauses 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

Now, we loop for m steps, we consider the cost of all the neighboring 
assignments (those with a single variable assigned differently), and we 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 
Cost(assignment) = number of unsatisfied clauses 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Flip the variable that results in lowest cost 

flip the variable that results in the lowest cost (even if that cost is higher than 
the cost of the current assignment!  This may keep us walking out of some 
local minima). 
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GSAT 

Hill climbing in the space of total assignments 
• Starts with random assignment for all variables 
• Moves to “neighboring” assignment with least 

cost (flip a single bit) 
Cost(assignment) = number of unsatisfied clauses 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Flip the variable that results in lowest cost 
– Exit if cost is zero 

If the cost is zero, we’ve found a satisfying assignment. Yay! Exit. 



88

Lecture 4 • 88 

GSAT vs DPLL 

So, how does GSAT compare to DPLL? 



89

Lecture 4 • 89 

GSAT vs DPLL 

• GSAT is sound 

GSAT is sound. If it gives you an answer, it’s correct. 



90

Lecture 4 • 90 

GSAT vs DPLL 

• GSAT is sound 
• It’s not complete 

GSAT is not complete. No matter how long you give it to wander around in 
the space of assignments, or how many times you restart it, there’s always a 
chance it will miss an existing solution. 
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GSAT vs DPLL 

• GSAT is sound 
• It’s not complete 
• You couldn’t use it effectively to generate all 

satisfying assignments 

It’s particularly unhelpful if you want to enumerate all the satisfying 
assignments; since it’s not systematic, you could never know whether you 
had gotten all of them. 
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GSAT vs DPLL 

• GSAT is sound 
• It’s not complete 
• You couldn’t use it effectively to generate all 

satisfying assignments 
• For a while, it was beating DPLL in SAT contests, 

but now the DPLL people are tuning up their 
heuristics and doing better 

For a while, GSAT was doing hugely better than DPLL in contests. But now 
people are adding better heuristics to DPLL and it is starting to do better 
than GSAT. 
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GSAT vs DPLL 

• GSAT is sound 
• It’s not complete 
• You couldn’t use it effectively to generate all 

satisfying assignments 
• For a while, it was beating DPLL in SAT contests, 

but now the DPLL people are tuning up their 
heuristics and doing better 

• Weakly constrained problems are easy for both 
DPLL and GSAT 

The Cook paper has an interesting discussion of which kinds of problems 
are easy and hard. Problems that are weakly constrained have many 
solutions. They’re pretty easy for both DPLL and GSAT to solve. 
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GSAT vs DPLL 

• GSAT is sound 
• It’s not complete 
• You couldn’t use it effectively to generate all 

satisfying assignments 
• For a while, it was beating DPLL in SAT contests, 

but now the DPLL people are tuning up their 
heuristics and doing better 

• Weakly constrained problems are easy for both 
DPLL and GSAT 

• Highly constrained problems are easy for DPLL 
but hard for GSAT 

Highly constrained problems, have only one, or very few solutions.  They’re 
easy for DPLL, because the simplification process will tend to quickly realize 
that a particular partial assignment has no possible satisfying extensions, 
and cut off huge chucks of the search space at once. For GSAT, on the 
other hand, it’s like looking for a needle in a haystack. 
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GSAT vs DPLL 

• GSAT is sound 
• It’s not complete 
• You couldn’t use it effectively to generate all 

satisfying assignments 
• For a while, it was beating DPLL in SAT contests, 

but now the DPLL people are tuning up their 
heuristics and doing better 

• Weakly constrained problems are easy for both 
DPLL and GSAT 

• Highly constrained problems are easy for DPLL 
but hard for GSAT 

• Problems in the middle are hard for everyone 

There is a class of problems that are neither weakly nor highly constrained. 
They’re very hard for all known algorithms. 
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moves through the space of complete assignments, but with a good deal 
more randomness than GSAT. 
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WALKSAT 

Like GSAT with additional “noise” 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 

It has the same external structure as GSAT. There’s an outer loop of n 
restarts at randomly chosen assignments. 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

Then, we take m steps, but the steps are somewhat different. 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Randomly select unsatisfied clause C 

First we randomly pick an unsatisfied clause C (on the grounds that, in order 
to find a solution, we have to find a way to satisfy all the unsatisfied clauses). 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Randomly select unsatisfied clause C 
– With p = 0.5 either 

Then, we flip a coin. With probability .5, we either 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Randomly select unsatisfied clause C 
– With p = 0.5 either 

– Flip the variable in C that results in lowest cost, or 

Flip the variable in C that results in the lowest cost, or 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Randomly select unsatisfied clause C 
– With p = 0.5 either 

– Flip the variable in C that results in lowest cost, or 
– Flip a randomly chosen variable in C 

Simply flip a randomly chosen variable in C. The reason for flipping 
randomly chosen variables is that sometimes (as in simulated annealing), its 
important to take steps that make things worse temporarily, but have the 
potential to get us into a much better part of the space. 
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WALKSAT 

Like GSAT with additional “noise” 

Loop n times 
• Randomly choose assignment A 
• Loop m times 

– Randomly select unsatisfied clause C 
– With p = 0.5 either 

– Flip the variable in C that results in lowest cost, or 
– Flip a randomly chosen variable in C 

– Exit if cost is zero 

Of course, if we find an assignment with cost 0, we’re done. 
The extra randomness in this algorithm has made it perform better, 
empirically, than GSAT. But, as you can probably guess from looking at this 
crazy algorithm, there’s no real science to crafting such a local search 
algorithm. You just have to try some things and see how well they work out 
in your domain. 
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Validity 

Okay. Now we’re going to switch gears a bit. We have been thinking about 
procedures to test whether a sentence is satisfiable.  Now, we’re going to 
look at procedures for testing validity. 
Why are we interested in validity? Remember the discussion we had near 
the end of the last lecture, with the complicated diagram?  It ended with the 
following theorem: 
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Validity 

• KB is a knowledge base, which is, a set of sentences (or a 
conjunction of all those sentences). 

• KB entails φ if and only if the sentence “KB → φ” is valid. 

• A sentence is valid if it is true in all interpretations. 

KB entails phi if and only if the sentence “KB implies phi” is valid. So, if we 
can test the validity of sentences, we can tell whether a conclusion is 
entailed by, or “follows from” some premises. 
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Validity 

• KB is a knowledge base, which is, a set of sentences (or a 
conjunction of all those sentences). 

• KB entails φ if and only if the sentence “KB → φ” is valid. 

• A sentence is valid if it is true in all interpretations. 

Proof is a way of determining validity without examining all 
models 

Proof is a way of determining validity without examining all models. It works 
by manipulating the syntactic expressions directly. 
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Validity 

• KB is a knowledge base, which is, a set of sentences (or a 
conjunction of all those sentences). 

• KB entails φ if and only if the sentence “KB → φ” is valid. 

• A sentence is valid if it is true in all interpretations. 

Proof is a way of determining validity without examining all 
models 

KB ` φ (means “φ can be proved from KB”) 

We’ll introduce a new symbol, single-turnstile, so that KB single-turnstyle Phi 
means “phi can be proved from KB”). 
A proof system is a mechanical means of getting new sentences from a set 
of old ones. 
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Validity 

• KB is a knowledge base, which is, a set of sentences (or a 
conjunction of all those sentences). 

• KB entails φ if and only if the sentence “KB → φ” is valid. 

• A sentence is valid if it is true in all interpretations. 

Proof is a way of determining validity without examining all 
models 

KB ` φ (means “φ can be proved from KB”) 
• Soundness: if KB ` φ then KB ² φ 

A proof system is sound if whenever something is provable from KB it is 
entailed by KB. 
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Validity 

• KB is a knowledge base, which is, a set of sentences (or a 
conjunction of all those sentences). 

• KB entails φ if and only if the sentence “KB → φ” is valid. 

• A sentence is valid if it is true in all interpretations. 

Proof is a way of determining validity without examining all 
models 

KB ` φ (means “φ can be proved from KB”) 
• Soundness: if KB ` φ then KB ² φ 
• Completeness: if KB ² φ then KB ` φ 

A proof system is complete if whenever something is entailed by KB it is 
provable from KB. 
Wouldn’t it be great if you were sound and complete derivers of answers to 
problems? You’d always get an answer and it would always be right! 
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Natural Deduction 

1. So what is a proof system? What is this single turnstile about, 
anyway? Well, presumably all of you have studied high-school geometry, 
that's often people's only exposure to formal proof. Remember that? You 
knew some things about the sides and angles of two triangles and then you 
applied the side-angle-side theorem to conclude -- at least people in 
American high schools were familiar with side-angle-side -- The side-angle-
side theorem allowed you to conclude that the two triangles were similar, 
right? 
That is formal proof. You've got some set of rules that you can apply. You've 
got some things written down on your page, and you kind of grind through, 
applying the rules that you have to the things that are written down, to write 
some more stuff down and so finally you've written down the things that you 
wanted to, and then you to declare victory. That's the single turnstile. 
There are (at least) two styles of proof system; we're going to talk about one 
briefly today and then the other one at some length next time. 
Natural deduction refers to a set of proof systems that are very similar to the 
kind of system you used in high-school geometry. We'll talk a little bit about 
natural deduction just to give you a flavor of how it goes in propositional 
logic, but it's going to turn out that it's not very good as a general strategy for 
computers. So this is a proof system that humans like, and then we'll talk 
about a proof system that computers like, to the extent that computers can 
like anything. 
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Natural Deduction 

Proof is a sequence of sentences 

A proof is a sequence of sentences. This is going to be true in almost all 
proof systems. 
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First we'll list the premises. These are the sentences in your knowledge 
base. The things that you know to start out with. You're allowed to write 
those down on your page. Sometimes they're called the "givens." You can 
put the givens down. 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 

Then, you can write down on a new line of your proof the results of applying 
an inference rule to the previous lines. 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 
When φ is on a line, you know KB ` φ 

Then, when Phi is on some line, you just proved Phi from KB. 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 
When φ is on a line, you know KB ` φ 

If inference rules are sound, then KB ² φ 

And if your inference rules are sound, and they'd better be, then KB entails 
Phi. 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 
When φ is on a line, you know KB ` φ 

If inference rules are sound, then KB ² φ 

α → β 

α 

β 

Modus 
ponens 

So let's look at inference rules, and learn how they work by example.  Here’s 
a famous one (written down by Aristotle); it has the great Latin name, 
"modus ponens", which means “affirming method”. 
It says that if you have “alpha implies beta” written down somewhere on your 
page, and you have alpha written down somewhere on your page, then you 
can write beta down on a new line.  (Alpha and beta here are metavariables, 
like phi and psi, ranging over whole complicated sentences). 
It’s important to remember that inference rules are just about ink on paper, 
or bits on your computer screen. They're not about anything in the world. 
Proof is just about writing stuff on a page, just syntax. But if you're careful in 
your proof rules and they're all sound, then at the end when you have some 
bit of syntax written down on your page, you can go back via the 
interpretation to some semantics. 
So you start out by writing down some facts about the world formally as your 
knowledge base. You do stuff with ink and paper for a while and now you 
have some other symbols written down on your page. You can go look them 
up in the world and say, "Oh, I see. That's what they mean." 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 
When φ is on a line, you know KB ` φ 

If inference rules are sound, then KB ² φ 

α → β 

α 

β 

α → β 

¬ β 

¬ α 

Modus 
ponens 

Modus 
tolens 

Here’s another inference rule. “Modus tollens” (denying method) says that, 
from “alpha implies beta” and “not beta” you can conclude “not alpha”. 
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Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 
When φ is on a line, you know KB ` φ 

If inference rules are sound, then KB ² φ 

α → β 

α 

β 

α 

β 

α Æ β 

α → β 

¬ β 

¬ α 

Modus 
ponens 

And-
introduction 

Modus 
tolens 

And-introduction say that from “alpha” and from “beta” you can conclude 
“alpha and beta”. That seems pretty obvious. 



119

Lecture 4 • 119 

Natural Deduction 

Proof is a sequence of sentences 
First ones are premises (KB) 
Then, you can write down on line j the result of 

applying an inference rule to previous lines 
When φ is on a line, you know KB ` φ 

If inference rules are sound, then KB ² φ 

α → β 

α 

β 

α 

β 

α Æ β 

α Æ β 

α 

α → β 

¬ β 

¬ α 

Modus 
ponens 

And-
introduction 

And-
elimination 

Modus 
tolens 

Conversely, and-elimination says that from “alpha and beta” you can 
conclude “alpha”. 
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Natural deduction example 

DerivationFormulaStep 

Prove S 

Now let’s do a sample proof just to get the idea of how it works. Pretend 
you’re back in high school… 
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Natural deduction example 

Given(Q Æ R) → S3 

GivenP → R2 

GivenP Æ Q1 

DerivationFormulaStep 

Prove S 

We’ll start with 3 sentences in our knowledge base, and we’ll write them on 
the first three lines of our proof: (P and Q), (P implies R), and (Q and R imply 
S). 
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Natural deduction example 

1 And-ElimP4 

Given(Q Æ R) → S3 

GivenP → R2 

GivenP Æ Q1 

DerivationFormulaStep 

Prove S 

From line 1, using the and-elimination rule, we can conclude P, and write it 
down on line 4 (together with a reminder of how we derived it). 
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Natural deduction example 

4,2 Modus PonensR5 

1 And-ElimP4 

Given(Q Æ R) → S3 

GivenP → R2 

GivenP Æ Q1 

DerivationFormulaStep 

Prove S 

From lines 4 and 2, using modus ponens, we can conclude R. 
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Natural deduction example 

1 And-ElimQ 

4,2 Modus PonensR 

1 And-ElimP 

Given(Q Æ R) → S 
GivenP → R 
GivenP Æ Q 

DerivationFormulaStep 

Prove S 

From line 1, we can use and-elimination to get Q. 
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Natural deduction example 

5,6 And-IntroQ Æ R 
1 And-ElimQ 

4,2 Modus PonensR 

1 And-ElimP 

Given(Q Æ R) → S 
GivenP → R 
GivenP Æ Q 

DerivationFormulaStep 

Prove S 

From lines 5 and 6, we can use and-introduction to get (Q and R) 
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Natural deduction example 

7,3 Modus PonensS 

5,6 And-IntroQ Æ R 
1 And-ElimQ 

4,2 Modus PonensR 

1 And-ElimP 

Given(Q Æ R) → S 
GivenP → R 
GivenP Æ Q 

DerivationFormulaStep 

Prove S 

Finally, from lines 7 and 3, we can use modus ponens to get S. Whew! We 
did it! 
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Proof systems 

There are many natural deduction systems; they are typically 
“proof checkers”, sound but not complete 

The process of formal proof seems pretty mechanical. So why can’t 
computers do it? 
They can. For natural deduction systems, there are a lot of “proof checkers”, 
in which you tell the system what conclusion it should try to draw from what 
premises. They’re always sound, but nowhere near complete. You typically 
have to ask them to do the proof in baby steps, if you’re trying to prove 
anything at all interesting. 
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Proof systems 

There are many natural deduction systems; they are typically 
“proof checkers”, sound but not complete 

Natural deduction uses lots of inference rules which introduces a 
large branching factor in the search for a proof. 

Part of the problem is that they have a lot of inference rules, which 
introduces a very big branching factor in the search for proofs. 
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Proof systems 

P → R3 

Q → R2 

P v Q1 

Prove R 

There are many natural deduction systems; they are typically 
“proof checkers”, sound but not complete 

Natural deduction uses lots of inference rules which introduces a 
large branching factor in the search for a proof. 

In general, you need to do “proof by cases” which introduces 
even more branching. 

Another big problem is the need to do “proof by cases”. What if you wanted 
to prove R from (P or Q), (Q implies R), and (P implies R)? You have to do 
it by first assuming that P is try and proving R, then assuming Q is true and 
proving R. And then finally applying a rule that allows you to conclude that R 
follows no matter what. This kind of proof by cases introduces another large 
amount of branching in the space. 
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Proof systems 

P → R3 

Q → R2 

P v Q1 

Prove R 
An alternative is 
resolution, a single, 
sound and complete 
inference rule for 
propositional logic. 

There are many natural deduction systems; they are typically 
“proof checkers”, sound but not complete 

Natural deduction uses lots of inference rules which introduces a 
large branching factor in the search for a proof. 

In general, you need to do “proof by cases” which introduces 
even more branching. 

An alternative is resolution, a single inference rule that is sound and 
complete, all by itself. It’s not very intuitive for humans to use, but it’s great 
for computers. We’ll look at it in great detail next time. 


