
Problem 1

This is how timing constraints work in the system proposed
in the Handout 10. Consider a user thread with actions A1
and A2 that generates some set of traces:

 A1 A2 A2 A1 A2 A1 ...
 A2 A1 A1 A1 A2 A2 ...

The Clock thread adds the clock ticks T to these traces by
interleaving ticks T with the other actions in the trace:

 A1 T A2 A2 T T A1 A2 A1 T ...
 T A2 A1 T A1 A1 T A2 T A2 ...

To get the execution of this trace in physical time, arrange
the clock ticks equidistantly so that each happens every
unit of physical time:

 A1 T A2 A2 T T A1 A2 A1 T ...
 T A2 A1 T A1 A1 T A2 T A2 ...

So if there are more ticks interleaved with thread
execution, this means that program actions take longer to
execute. If a clock reaches a deadline D, then further
ticks are disabled until the deadline is removed.

 ... T (deadline reached) A1 A2 A2 A1 (deadline released) T ...

This ensures that after assigning the physical time
according to clock ticks, the time assigned to the part of
the program where the deadline holds will never have time
larger than deadline. In other words, deadlines guarantee
that program actions will be packed densely enough to
satisfy the timing constraints.

(The reason why this scheme may be confusing is that it does
not say anything about how to achieve such schedule in
practice, it just specifies the desired timing behaviors.
It lacks the constraints specifying the execution time of
program basic program actions and a methodology for
verifying that time taken according to these actions
corresponds to the desired timing constraints which are
stated. So all are talking about in the problem is a way of
specifying how the program should execute in time.)

For part b), assume there is only Clock and one thread,
so there can be no delay actions executing simultaneously.
Also assume that the set of deadlines or time are not
modified by the user program, the only modification is due
to "delay" procedure.

By "time passes only in delay(k) actions" I mean that there
should be no clock ticks allowed outside "delay" procedures.

The system in part b) should have roughly the following
property. Consider a trace

 ... A delay(k1) ... delay(kn) B ...

If A occurs at time t and B at time t+p then

 p = k1 + ... + kn

In the presence of multiple threads, the analogous property
would ideally hold. Consider any thread X and extract from
the trace (preserving order) all actions generated by X and
Clock. Then the same property should hold for such trace
"projection":

 ... A delay(k1) ... delay(kn) B ...

If A occurs at time t and B at time t+p in the extracted

trace, then

 p = k1 + ... + kn

Now in part c) you can check whether this property holds for
your implementation for b). If it does not hold, you do not
need to fix it, just explain why it does not hold.
Alternatively, if your solution has some other major problem
in multithreaded case, you can point to that problem. If
your solution for part b) works fine in multithreaded case,
explain how it achieves the "desirable property" that I just
described. Again it is not an error if in c) the answer is
that there are problems.

Problem 2

The criterion for when an optimization is better is the same
throughout the problem, even in b) case.

Problem 3

Do not worry too much about the Poisson distribution, just
use the formula for the expected service time from the
handout.

Problem 4

You should add the minimal integer number of disks so that
disk is not a bottleneck of the system.

Assume that writing x amount of data requires time

 latency + x/bandwidth

When you do a batching then you pay latency only
once for the entire batch.

The "steady state" in this context is just a funny way of
saying that you may use all simple formulas from the
handout.

