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19. Sequential Transactions with Caching 

There are many situations in which we want to make a ‘big’ action atomic, either with respect to 
concurrent execution of other actions (everyone else sees that the big action has either not started 
or run to completion) or with respect to failures (after a crash the big action either has not started 
or has run to completion). 

Some examples: 
Debit/credit: x := x + ∆; y := y – ∆ 
Reserve airline seat 
Rename file 
Allocate file and update free space information 
Schedule meeting: room and six participants 
Prepare report on one million accounts 

Why is atomicity important? There are two main reasons: 

1.	 Stability: A large persistent state is hard to fix it up if it gets corrupted. This can happen 
because of a system failure, or because an application fails in the middle of updating the state 
(presumably because of a bug). Manual fixup is impractical, and ad-hoc automatic fixup is 
hard to code correctly. Atomicity is a valuable automatic fixup mechanism. 

2.	 Consistency: We want the state to change one big action at a time, so that between changes it 
is always ‘consistent’, that is, it always satisfies the system’s invariant and always reflects 
exactly the effects of all the big actions that have been applied so far. This has several 
advantages: 

• When the server storing the state crashes, it’s easy for the client to recover. 

• When the client crashes, the state remains consistent. 

•	 Concurrent clients always see a state that satisfies the invariant of the system. It’s much 
easier to code the client correctly if you can count on this invariant. 

The simplest way to use the atomicity of transactions is to start each transaction with no volatile 
state. Then there is no need for an invariant that relates the volatile state to the stable state 
between atomic actions. Since these invariants are the trickiest part of easy concurrency, getting 
rid of them is a major simplification. 

Overview 

In this handout we treat failures without concurrency; handout 20 treats concurrency without 
failures. A grand unification is possible and is left as an exercise, since the two constructions are 
more or less orthogonal. 
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We can classify failures into four levels. We show how to recover from the first three. 

Transaction abort: not really a failure, in the sense that no work is lost except by request. 

Crash: the volatile state is lost, but the only effect is to abort all uncommitted 
transactions. 

Media failure: the stable state is lost, but it is recovered from the permanent log, so that 
the effect is the same as a crash. 

Catastrophe or disaster: the stable state and the permanent log are both lost, leaving the 
system in an undefined state. 

We begin by repeating the SequentialTr spec and the LogRecovery code from handout 7 on 
file systems, with some refinements. Then we give much more efficient code that allows for 
caching data; this is usually necessary for decent performance. Unfortunately, it complicates 
matters considerably. We give a rather abstract version of the caching code, and then sketch the 
concrete specialization that is in common use. Finally we discuss some pragmatic issues. 

The spec 

An A is an encoded action, that is, a transition from one state to another that also returns a result 
value. Note that an A is a function, that is, a deterministic transition. 

MODULE NaiveSequentialTr [
V, % Value of an action 
S WITH { s0: ()->S } % State, s0 initially 
] EXPORT Do, Commit, Crash = 

TYPE A = S->(V, S) % Action 

VAR ss := S.s0() % stable state 
vs := S.s0() % volatile state 

APROC Do(a) -> V = << VAR v | (v, vs) := a(vs); RET v >>

APROC Commit() = << ss := vs >>

APROC Crash () = << vs := ss >> % ‘aborts’ the transaction


END NaiveSequentialTr 


Here is a simple example, with variables X and Y as the stable state, and x and y the volatile state. 
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Action X Y x y 
5 5 5 5 

Do(x := x – 1); 
5 5 4 5 

Do(y := y + 1) 
5 5 4 6 

Commit 
4 6 4 6 

Crash before commit 
5 5 5 5 

If we want to take account of the possibility that the server (specified by this module) may fail 
separately from the client, then the client needs a way to detect this. Otherwise a server failure 
and restart after the decrement of x in the example could result in X = 5, Y = 6, because the client 
will continue with the decrement of y and the commit. Alternatively, if the client fails at that 
point, restarts, and repeats its actions, the result would be X = 3, Y = 6. To avoid these problems, 
we introduce a new Begin action to mark the start of a transaction as Commit marks the end. We 
use another state variable ph (for phase) that keeps track of whether there is an uncommitted 
transaction in progress. A transaction in progress is aborted whenever there is a crash, or if 
another Begin action is invoked before it commits. We also introduce an Abort action so the 
client can choose to abandon a transaction explicitly. 

This interface is slightly redundant, since Abort = Begin; Commit, but it’s the standard way to 
do things. Note that Crash = Abort also; this is not redundant, since the client can’t call Crash. 

MODULE SequentialTr [
V, % Value of an action 
S WITH { s0: ()->S } % State; s0 initially 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action 

VAR ss := S.s0() % Stable State 
vs := S.s0() % Volatile State 
ph : ENUM[idle, run] := idle % PHase (volatile) 

EXCEPTION crashed 

APROC Begin() = << Abort(); ph := run >> % aborts any current trans. 

APROC Do(a) -> V RAISES {crashed} = << 
IF ph = run => VAR v | (v, vs) := a(vs); RET v [*] RAISE crashed FI >> 

APROC Commit() RAISES {crashed} =
<< IF ph = run => ss := vs; ph := idle [*] RAISE crashed FI >> 

APROC Abort () = << vs := ss; ph := idle >> % same as Crash 
APROC Crash () = << vs := ss; ph := idle >> % ‘aborts’ the transaction 

END SequentialTr 
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Here is the previous example extended with the ph variable. 

Action X Y x y ph
5 5 5 5 idle 

Begin(); 
5 5 5 5 run 

Do(x := x - 1); 
5 5 4 5 run 

Do(y := y + 1) 
5 5 4 6 run 

Commit 
4 6 4 6 idle 

Crash before commit 
5 5 5 5 idle 

Uncached code 

Next we give the simple uncached code based on logging; it is basically the same as the 
LogRecovery module of handout 7 on file systems, with the addition of ph. Note that ss is not 
the same as the ss of SequentialTr; the abstraction function gives the relation between them. 

This code may seem impractical, since it makes no provision for caching the volatile state vs. 
We will study how to do this caching in general later in the handout. Here we point out that a 
scheme very similar to this one is used in Lightweight Recoverable Virtual Memory1, with copy-
on-write used to keep track of the differences between vs and ss. 

MODULE LogRecovery [ % implements SequentialTr 
V, % Value of an action 
S0 WITH { s0: ()->S0 } % State 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE 	A = S->(V, S) % Action 
U = S -> S % atomic Update 
L = SEQ U % Log 
S = S0 WITH { "+":=DoLog } % State with useful ops 
Ph = ENUM[idle, run] % PHase 

VAR ss := S.s0() % stable state 
vs := S.s0() % volatile state 
sl := L{} % stable log 
vl := L{} % volatile log 
ph := idle % phase (volatile) 
rec := false % recovering 

EXCEPTION crashed 

1 M. Satyanarayanan et al., Lightweight recoverable virtual memory. ACM Transactions on Computer Systems 12, 1 
(Feb. 1994), pp 33-57. 
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% ABSTRACTION to SequentialTr
SequentialTr.ss = ss + sl
SequentialTr.vs = (~ rec => vs [*] rec => ss + sl)
SequentialTr.ph = ph 

% INVARIANT 
~ rec ==> vs = ss + sl + vl 
(EXISTS l | l <= vl /\ ss + sl = ss + l)
% Applying sl to ss is equivalent to applying a prefix l of vl. That is, the 
% state after a crash will be the volatile state minus some updates at the end. 

APROC Begin() = << vs := ss; sl := {}; vl := {}; ph := run >> 

APROC Do(a) -> V RAISES {crashed} = <<
IF ph = run => VAR v, l | (v, vs + l) = a(vs) =>

vs := vs + l; vl := vl + l; RET v
[*] RAISE crashed
FI >> 

PROC Commit()RAISES {crashed} =
IF ph = run => << sl := vl; ph := idle >> ; Redo() >> [*] RAISE crashed FI 

PROC Abort() = << vs := ss; sl := {}; vl := {}; ph := idle >> 

PROC Crash() =
<< vs := ss; vl :={}; ph := idle; rec := true >>; % what the crash does 
vl := sl; Redo(); vs := ss; rec := false % the recovery action 

PROC Redo() = % replay vl, then clear sl 
% sl = vl before this is called 

DO vl # {} => << ss := ss + {vl.head} >>; << vl := vl.tail >> OD
<< sl := {} >> 

FUNC DoLog(s, l) -> S = % s + l = DoLog(s, l)
IF l = {} => RET s % apply U’s in l to s 

[*] RET DoLog((l.head)(s), l.tail))

FI 


END LogRecovery 

Here is what this code does for the previous example, assuming for simplicity that A = U. You 
may wish to apply the abstraction function to the state at each point and check that each action 
simulates an action of the spec. 
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Action X Y x y sl vl ph
5 5 5 5 {} {} idle 

Begin(); 
Do(x := x - 1); 
Do(y := y + 1) 

5 5 4 6 {} {x:=4; y:=6} run 
Commit 

5 5 4 6 {x:=4; y:=6} {x:=4; y:=6} idle 
Redo: apply x:=4 

4 5 4 6 {x:=4; y:=6} {y:=6} idle 
Redo: apply y:=6 

4 6 4 6 {x:=4; y:=6} {} idle 
Redo: erase sl 

4 6 4 6 {} {} idle 

Crash before commit 
5 5 5 5 {} {} idle 

Log idempotence 

For this redo crash recovery to work, we need idempotence of logs: s + l + l = s + l, since 
a crash can happen during recovery. From this we get (remember that "<=" on sequences is 
“prefix”) 

l1 <= l2 ==> s + l1 + l2 = s + l2, 
and more generally 

(ALL l1, l2 | IsHiccups(l1, l2) ==> s + l1 + l2 = s + l2)
where 

FUNC IsHiccups(k: Log, l) -> Bool =
% k is a sequence of attempts to complete l 

RET k = {}
\/ (EXISTS k', l'| k = k' + l' /\ l' # {} /\ l' <= l

/\ IsHiccups(k', l) )
because we can keep absorbing the last hiccup l' into the final complete l. See handout 7 for 
more detail. 

We can get log idempotence if the U's commute and are idempotent, or if they are all writes like 
the assignments to x and y in the example, or writes of disk blocks. Often, however, we want to 
make more general updates atomic, for instance, inserting an item into a page of a B-tree. We 
can make general U's log idempotent by attaching a UID to each one and recording it in S: 

TYPE 	S = [ss, tags: SET UID]
U = [uu: SS->SS, tag: UID] WITH { meaning:=Meaning } 

FUNC Meaning(u, s)->S =
IF u.tag IN s.tags => RET s
[*] RET S{ ss := (u.uu)(s.ss), tags := s.tags + {u.tag} }
FI 
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If all the u's in l have different tags, we get log idempotence. The way to think about this is that 
the modified updates have the meaning: if the tag isn’t already in the state, do the original 
update, otherwise don’t do it. 

Most practical code for this makes each U operate on a single variable (that is, map one value to 
another without looking at any other part of S; in the usual application, a variable is one disk 
block). It assigns a version number VN to each U and keeps the VN of the most recently applied U 
with each block. Then you can tell whether a U has already been applied just by comparing its VN 
with the VN of the block. For example, if the version number of the update is 23: 

Original Idempotent 

The disk block x: Int 	 x: Int 
vn: Int 

The update x := x + 1 IF vn = 22 => x := x + 1; 
vn := 23 

[*] SKIP FI 

Note: vn = 22 implies that exactly updates 1, 2, ..., 22 have been applied. 

Writing the log atomically 

This code is still not practical, because it requires writing the entire log atomically in Commit, 
and the log might be bigger than the one disk block that the disk hardware writes atomically. 
There are various ways to get around this, but the standard one is to add a stable sph variable that 
can be idle or commit. We view LogRecovery as a spec for our new code, in which the sl of 
the spec is empty unless sph = commit. The module below includes only the parts that are 
different from LogRecovery. It changes sl only one update at a time. 

MODULE IncrementalLog % implements LogRecovery 

... 

VAR ... 
sph : ENUM[idle, commit] := idle % stable phase 
vph : ENUM[idle, run, commit] := idle % volatile phase 

% ABSTRACTION to LogRecovery
LogRecovery.sl = (sph = commit => sl [*] {})
LogRecovery.ph = (sph # commit => vph [*] idle)
the identity elsewhere 

APROC Begin() = << vs := ss; sl := {}; vl := {}; vph := run >> 

APROC Do(a) -> V RAISES {crashed} = <<
IF vph = run … % the rest as before 
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PROC Commit() =
IF vph = run => 

% copy vl to sl a bit at a time 
VAR l := vl | DO l # {} => << sl := sl {l.head}; l := l.tail >> OD;
<< sph := commit; vph := commit >>;
Redo()

[*] RAISE crashed
FI 

PROC Crash() =
<< vs := ss; vl := {}; vph := idle >>; % what the crash does 
vph := sph; vl := (vph = idle => {} [*] sl); % the recovery 
Redo(); vs := ss % action 

PROC Redo() = % replay vl, then clear sl 
DO vl # {} => << ss := ss + {vl.head} >>; << vl := vl.tail >> OD
DO sl # {} => << sl := sl.tail >> OD;
<< sph := idle; vph := idle >> 

END IncrementalLog 

And here is the example again. 

Action 
Begin; Do; Do 

X Y x y sl vl sph vph 

5 5 4 6 {} {x:=4; y:=6} idle run 
Commit 

5 5 4 6 {x:=4; y:=6} {x:=4; y:=6} commit commit 
Redo: x:=4; y:=6 

4 6 4 6 {x:=4; y:=6} {} commit commit 
Redo: cleanup 

4 6 4 6 {} {} idle idle 

We have described sph as a separate stable variable, but in practice each transaction is labeled 
with a unique transaction identifier, and sph = commit for a given transaction is represented by 
the presence of a commit record in the log that includes the transaction’s identifier. Conversely, 
sph = idle is represented by the absence of a commit record or by the presence of a later 
“transaction end” record in the log. The advantages of this representation are that writing sph can 
be batched with all the other log writes, and that no storage management is needed for the sph
variables of different transactions. 

Note that you still have to be careful about the order of disk writes: all the log data must really be 
on the disk before sph is set to commit. This complication, called “write-ahead log” or ‘WAL’ in 
the database literature, is below the level of abstraction of this discussion. 
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Caching 

We would like to have code for SequentialTr that can run fast. To this end it should: 

1.	 Allow the volatile state vs to be cached so that the frequently used parts of it are fast to 
access, but not require a complete copy of the parts that are the same in the stable state. 

2.	 Decouple Commit from actually applying the updates that have been written to the stable log, 
because applying the updates slows down Commit and therefore holds up the client, and it 
also does a lot of random disk writes that do not make good use of the disk. By waiting to 
write out changes until the main memory space is needed, we have a chance of accumulating 
many changes to a single disk block and paying only one disk write to record them all. We 
may also be able to group updates to adjacent regions of the disk. 

3.	 Decouple crash recovery from actually applying updates. This is important once we have 
decoupled Commit from applying updates, since a lot of updates can now pile up and 
recovery can take a long time. Also, we get it more or less for free. 

4.	 Allow uncommitted updates to be written to the stable log, and even applied to the stable 
state. This saves a lot of bookkeeping to keep track of which parts of the cache go with 
uncommitted transactions, and it allows a transaction to make more updates than will fit in 
the cache. 

Our new caching code has a stable state; as in LogRecovery, the committed state is the stable 
state plus the updates in the stable log. Unlike LogRecovery, the stable state may not include all 
the committed updates. Commit need only write the updates to the stable log, since this gets them 
into the abstract stable state SequentialTR.ss; a Background thread updates the concrete stable 
state LogAndCache.ss. We keep the volatile state up to date so that Do can return its result 
quickly. The price paid in performance for this scheme is that we have to reconstruct the volatile 
state from the stable state and the log after a crash, rather than reading it directly from the 
committed stable state, which no longer exists. So there’s an incentive to limit the amount by 
which the background process runs behind. 

Normally the volatile state consists of entries in the cache. Although the abstract code below 
does not make this explicit, the cache usually contains the most recent values of variables, that is, 
the values they have when all the updates have been done. Thus the stable state is updated simply 
by writing out variables from the cache. If the write operations write complete disk blocks, as is 
most often the case, it’s convenient for the cached variables to be disk blocks also. If the 
variables are smaller, you have to read a disk block before writing it; this is called an ‘installation 
read’. The advantage of smaller variables, of course, is that they take up less space in the cache. 

The cache together with the stable state represents the volatile state. The cache is usually called 
a ‘buffer pool’ in the database literature, where these techniques originated. 

We want to ‘install’ parts of the cache to the stable state independently of what is committed (for 
a processor cache, install is usually called ‘flush’, and for a file system cache it is usually called 
‘sync’). Otherwise we might run out of cache space if there are transactions that don’t commit 
for a long time. Even if all transactions are short, a popular part of the cache might always be 
touched by a transaction that hasn’t yet committed, so we couldn’t install it and therefore 

6.826—Principles of Computer Systems 2002 

couldn’t truncate the log. Thus the stable state may run ahead of the committed state as well as 
behind. This means that the stable log must include “undo” operations that can be used to reverse 
the uncommitted updates in case the transaction aborts instead of committing. In order to keep 
undoing simple when the abort is caused by a crash, we arrange things so that before applying an 
undo, we use the stable log to completely do the action that is being undone. Hence an undo is 
always applied to an “action consistent” state, and we don’t have to worry about the interaction 
between an undo and the smaller atomic updates that together comprise the action. To implement 
this rule we need to add an action’s updates and its undo to the log atomically. 

To be sure that we can abort a transaction after installing some parts of the cache to the stable 
state, we have to follow the “write ahead log” or WAL rule, which says that before a cache entry 
can be installed, all the actions that affected that entry (and therefore all their undo’s) must be in 
the stable log. 

Although we don’t want to be forced to keep the stable state up with the log, we do want to 
discard old log entries after they have been applied to the stable state, whether or not the 
transaction has committed, so the log space can be reused. Of course, log entries for undo’s can't 
be discarded until Commit. 

Finally, we want to be able to keep discarded log entries forever in a “permanent log” so that we 
can recover the stable state in case it is corrupted by a media failure. The permanent log is 
usually kept on magnetic tape. 

Here is a summary of our requirements: 

Cache that can be installed independently of locking or commits. 

Crash recovery (or ‘redo’) log that can be truncated. 

Separate undo log to simplify truncating the crash recovery log. 

Complete permanent log for media recovery. 

The LogAndCache code below is a full description of a practical transaction system, except that it 
doesn’t deal with concurrency (see handout 20) or with distributing the transaction among 
multiple SequentialTr modules (see handout 27). The strategy is to: 

• Factor the state into independent components, for example, disk blocks. 

•	 Factor the actions into log updates called U’s and cache updates called W’s. Each cache update 
not only is atomic but works on only one state component. Cache updates for different 
components commute. Log updates do not need either of these properties. 

•	 Define an undo action for each action (not each update). The action followed by its undo 
leaves the state unchanged. An undo action is a full-fledged action, so it may itself involve 
multiple updates. 

• Keep separate log and undo log, both stable and volatile. 

Log : sequence of updates 

Handout 19. Sequential Transactions with Caching 9 Handout 19. Sequential Transactions with Caching 10 



6.826—Principles of Computer Systems 2002 

UndoLog : sequence of undo actions (not updates) 

The essential step is installing a cache update into the stable state. This is an internal action, so it 
must not change the abstract stable or volatile state. As we shall see, there are many ways to 
satisfy this requirement. 

The code in LogAndCache is rather abstract. We give the usual concrete form in BufferPool 
below. Here W (a cached update) is just s(ba) := d (that is, set the contents of a block of the 
stable state to a new value). This is classical caching, and it may be helpful to bear it in mind as 
concrete code for these ideas, which is worked out in detail in BufferPool. Note that this kind of 
caching has another important property: we can get the current value of s(ba) from the cache. 
This property isn’t essential for correctness, but it certainly makes it easier for Do to be fast. 

MODULE LogAndCache [ % implements SequentialTr 
V, % Value of an action 
S0 WITH {s0:=()->S0} % abstract State; s0 initially 
] = EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action 
S = S0 WITH {"+":=DoLog, % State with ops 

"++":= DoCache,
"-" := UndoLog}

Tag = ENUM[commit]
U = S -> S % Update 
Un = (A + ENUM[cancel]) % Undo 
W = S -> S % update in cache 
L = SEQ (SEQ U + Tag) % Log 
UL = SEQ Un % Undo Log 
C = SET W WITH {"++":=CombineCache} % Cache 
Ph = ENUM[idle, run] % Phase 

VAR ss := S.s0() % Stable State 

sl := L{} % Stable Log 
sul := UL{} % Stable Undo Log 

c : C := {} % Cache (dirty part) 
vl := L{} % Volatile Log 
vul := UL{} % Volatile Undo Log 

vph := idle % Volatile PHase 

pl := L{} % Permanent Log 

undoing := false 

Note that there are two logs, called L and UL (for undo log). A L records groups of updates; the 
difference between an update U and an action A is that an action can be an arbitrary state change, 
while an update must interact properly with a cache update W. To achieve this, a single action 
must in general be broken down into several updates. All the updates from one action form one 
group in the log. The reason for grouping the updates of an action is that, as we have seen, we 
have to add all the updates of an action, together with its undo, to the stable log atomically. 
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There are various ways to represent a group, for example as a sequence of updates delimited by a 
special mark token, but we omit these details. 

A cache update W must be applied atomically to the stable state. For example, if the stable state is 
just raw disk pages, the only atomic operation is to write a single disk page, so an update must be 
small enough that it changes only one page. 

UL records undo actions Un that reverse the effect of actions. These are actions, not updates; a Un 
is converted into a suitable sequence of U’s when it is applied. When we apply an undo, we treat 
it like any other action, except that it doesn’t need an undo itself; this is because we only apply 
undo’s to abort a transaction, and we never change our minds about aborting a transaction. We 
do need to ensure either that each undo is applied only once, or that undo actions have log 
idempotence. Since we don’t require log idempotence for ordinary actions (only for updates), it’s 
unpleasant to require it for undo’s. Instead, we arrange to remove each undo action from the 
undo log atomically with applying it. We code this idea with a special Un called cancel that 
means: don’t apply the next earlier Un in the log that hasn’t already been canceled, and we write 
a cancel to vul/sul atomically as we write the updates of the undo action to vl/sl. For 
example, after un1, un2, and un3 have been processed, ul might be 

un0 un1 un2 cancel un3 cancel cancel 
= un0 un1 un2 cancel cancel 
= un0 un1 cancel 
= un0 

Of course many other encodings are possible, but this one is simple and fits in well with the rest 
of the code. 

Examples of actions: 

f(x) := y % simple overwriting 
f(x) := f(x) + y % not idempotent 
f := f{x -> } % delete 
split B-tree node 

This code has commit records in the log rather than a separate sph variable as in 
IncrementalLog. This makes it easier to have multiple transactions in the stable log. For brevity 
we omit the machinations with sph. 

We have the following requirements on U, Un, and W: 

•	 We can atomically add to sl both all the U’s of an action and the action’s undo (ForceOne 
does this). 

• Applying a W to ss is atomic (Install does this). 

•	 Applying a W to ss doesn’t change the abstract ss or vs. This is a key property that replaces 
the log idempotence of LogRecovery. 

•	 A W looks only at a small part of s when it is applied, normally only one component 
(DoCache does this). 

•	 Mapping U to W is cheap and requires looking only at a small part (normally only one 
component) of ss, at least most of the time (Apply does this). 
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•	 All W’s in the cache commute. This ensures that we can install cache entries in any order 
(CombineCache assures this). 

% ABSTRACTION to SequentialTr
SequentialTr.ss = ss + sl – sul
SequentialTr.vs = (~undoing => ss + sl + vl [*] ss + (sl+vl)–(sul+vul)
SequentialTr.ph = (~undoing => vph idle) 

% INVARIANTS 
[1] (ALL l1, l2 | sl = l1 + {commit} + l2 % Stable undos cancel 

/\ ~ commit IN l2 % uncommitted tail of sl 
==> ss + l1 = ss + sl - sul ) 

[2] ss + sl = ss + sl + vl - vul % Volatile undos cancel vl 

[3] ~ undoing ==> ss + sl + vl = ss ++ c % Cache is correct; this is vs 

[4] (ALL w1 :IN c, w2 :IN c | 	 % All W's in c commute 
w1 * w2 = w2 * w1). 

[5] S.s0() + pl + sl - sul = ss % Permanent log is complete 

[6] (ALL w :IN c | 	 ss ++ {w} + sl % Any cache entry can be installed 
= ss + sl 

% External interface 

PROC Begin() = << IF vph = run => Abort() [*] SKIP FI; vph := run >> 

PROC Do(a) -> V RAISES {crashed} = <<
IF vph = run => VAR v | v := Apply(a, AToUn(a, ss ++ c)); RET v
[*] RAISE crashed 
FI >> 

PROC Commit() RAISES {crashed} =
IF vph = run => ForceAll(); << sl := sl + {commit}; sul := {}; vph := idle >>
[*] RAISE crashed 
FI 

PROC Abort () = undoing := true; Undo(); vph := idle 

PROC Checkpoint() = VAR c' := c, w | % move sl + vl to pl
DO c' # {} => w := Install(); c' := c' - {w} OD; % until everything in c' is installed 
Truncate() 

PROC Crash() =
<< vl := {}; vul := {}; c := {}; undoing := true >>;
Redo(); Undo(); vph := idle 
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% Internal procedures invoked from Do and Commit 

APROC Apply(a, un) -> V = << % called by Do and Undo 
VAR 	v, l, vs := ss ++ c |

(v, l) := AToL(a, vs); % find U’s that do a 
vl := vl + l; vul := vul + {un};
VAR c' | ss ++ c ++ c' = ss ++ c + l % Find w’s for action a 

=> c := c ++ c';
RET v >> 

PROC ForceAll() = DO vl # {} => ForceOne() OD; RET % more all of vl to sl 

APROC ForceOne() = << VAR l1, l2 | % move one a from vl to sl 
sl := sl + {vl.head}; sul := sul + {vul.head};
vl := vl.tail; vul := vul.tail >> 

% Internal procedures invoked from Crash or Abort 

PROC Redo() = VAR l := + : sl | % Restore c from sl after crash 
DO << l # {} => VAR vs := ss ++ c, w | % Find w for each u in l 

vs ++ {w} = vs + L{{l.head}} => c := c ++ {w}; l := l.tail >>
OD 

PROC Undo() = % Apply sul + vul to vs 
VAR ul := sul + vul, i := 0 |

DO ul # {} => VAR un := ul.last |
ul := ul.reml;
IF un=cancel => i := i+1 [*] i>0 => i := i-1 [*] Apply(un, cancel) FI

OD; undoing := false
% Every entry in sul + vul has a cancel, and everything is undone in vs. 

% Background actions to install updates from c to ss and to truncate sl 

THREAD Background() =
DO 

Install()
[] ForceOne() % Enough of these implement WAL 
[] Drop()
[] Truncate()
[] SKIP 
OD 

APROC Install() -> W = << VAR w :IN c | % Apply some w to ss; requires WAL 
ss # ss ++ {w} % w isn’t already in ss 

/\ ss ++ {w} + sl = ss + sl => % w is in sl, the WAL condition 
ss := ss ++ {w}; RET w >> 

APROC Drop() = << VAR w :IN c | ss ++ {w} = ss => c := c - {w} >> 

APROC Truncate() = << VAR l1, l2 | % Move some of sl to pl
sl = l1 + l2 /\ ss + l2 = ss + sl => pl := pl + l1; sl := l2 >> 

% Media recovery 

The idea is to reconstruct the stable state ss from the permanent log pl by redoing all the 
updates, starting with a fixed initial ss. Details are left as an exercise. 
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% Miscellaneous functions 

FUNC AToL(a, s) -> (V, L) = VAR v, l | % all U’s in one group 
l.size = 1 /\ (v, s + l) = a(s) => RET (v, l) 

FUNC AToUn(a, s) -> Un = VAR un, v, s' |
(v, s') = a(s) /\ (nil, s) = un(s') => RET un 

The remaining functions are only used in guards and invariants. 

FUNC DoLog(s, l) -> S = % s + l = DoLog(s, l)
IF l = {} => RET s % apply U's in l to s 
[*] VAR us := l.head |

RET DoLog(( us IS Tag \/ us = {} => s
[*] (us.head)(s), {us.tail} + l.tail))

FI 

FUNC DoCache(s, c) -> S = % s ++ c = DoCache(s, c)
DO VAR w :IN c | s := w(s), c := c - {w} OD; RET s 

FUNC UndoLog(s, ul) -> S = % s - l = UndoLog(s, l)
IF ul = {} => RET s
[] ul.last # cancel => RET UndoLog((u.last)(s), ul.reml)
[] VAR ul1, un, ul2 | un # cancel /\ ul = ul1 + {un, cancel} + ul2 =>

RET UndoLog(s, ul1 + ul2)
FI 

A cache is a set of commuting update functions. When we combine two caches c1 and c2, as we 
do in apply, we want the total effect of c1 and c2, and all the updates still have to commute and 
be atomic updates. The CombineCache below just states this requirement, without saying how to 
achieve it. Usually it’s done by requiring updates that don’t commute to compose into a single 
update that is still atomic. In the usual case updates are writes of single variables, which do have 
this property, since u1 * u2 = u2 if both are writes of the same variable. 

FUNC CombineCache(c1, c2) -> C = % c1++c2 = CombineCache(c1,c2)
VAR c | (* : c.seq) = (* : c1.seq) * (* : c2.seq)

/\ (ALL w1 :IN c, w2 :IN c | w1 # w2 ==> w1 * w2 = w2 * w1) => RET c 

END LogAndCache 

We can summarize the ideas in LogAndCache: 

•	 Writing stable state before committing a transaction requires undo. We need to write before 
committing because cache space for changed state is limited, while the size of a transaction 
may not be limited, and also to avoid starvation that keeps us from installing some cache 
entries that are always part of an uncommitted transaction. 

•	 Every uncommitted log entry has a logged undo. The entry and the undo are made stable by a 
single atomic action (using some low-level coding trick that we leave as an exercise for the 
reader). We must log an action and its undo before installing a cache entry affected by it; this 
is write ahead logging. 

•	 Recovery is complete redo followed by undo of uncommitted transactions. Because of the 
complete redo, undo’s are always from a clean state, and hence can be actions. 
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•	 An undo is executed like a regular action, that is, logged. The undo of the undo is a special 
cancel action. 

•	 Writing a W to stable state doesn’t change the abstract stable state. This means that redo 
recovery works. It’s a strong constraint on the relation between logged U’s and cached W’s. 

Multi-level recovery 

Although in our examples an update is usually a write of one disk block, the LogAndCache code 
works on top of any kind of atomic update, for example a B-tree or even another transactional 
system. The latter case codes each W as a transaction in terms of updates at a still lower level. Of 
course this idea can be applied recursively to yield a n level system. This is called ‘multi-level 
recovery’.2 It’s possible to make a multi-level system more efficient by merging the logs from 
several levels into a single sequential structure. 

Why would you want to complicate things in this way instead of just using a single-level 
transaction, which would have the same atomicity? There are at least two reasons: 

•	 The lower level may already exist in a form that you can’t change, without the necessary 
externally accessible locking or commit operations. A simple example is a file system, which 
typically provides atomic file renaming, on which you can build something more general. Or 
you might have several existing database systems, on top of which you want to build 
transactions that change more than one database. We show in handout 27 how to do this 
using two-phase commit. But if the existing systems don’t implement two-phase commit, you 
can still build a multi-level system on them. 

•	 Often you can get more concurrency by allowing lower level transactions to commit and 
release their locks. For example, a B-tree typically holds locks on whole disk blocks to 
maintain the integrity of the index data structures, but at the higher level only individual 
entries need to be locked. 

Buffer pools 

The standard code for the ideas in LogAndCache makes a U and a W read and write a single block 
of data. The W just gives the current value of the block, and the U maps one such block into 
another. Both W’s (that is, cache blocks) and U’s carry sequence numbers so that we can get the 
log idempotence property without restricting the kind of mapping that a U does, using the method 
described earlier; these are called ‘log sequence numbers’ or LSN’s in the database literature. 

The LSN’s are also used to code the WAL guard in Install and the guard in Truncate. It’s OK 
to install a W if the LSN of the last entry in sl is at least as big as the n of the W. It’s OK to drop a 
U from the front of sl if every uninstalled W in the cache has a bigger LSN. 

The simplest case is a block equal to a single disk block, for which we have an atomic write. 
Often a block is chosen to be several disk blocks, to reduce the size of indexes and improve the 

2 D. Lomet. MLR: A recovery method for multi-level systems. Proc. SIGMOD Conf., May, 1992, pp 185-194. 
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efficiency of disk transfers. In this case care must be taken that the write is still atomic; many 
commercial systems get this wrong. 

The following module is incomplete. 

MODULE BufferPool [ % implements LogAndCache 
V, % Value of an action

S0 WITH {s0:=()->S0}, % abstract State

Data

] EXPORT ... = 


TYPE 
SN = Int % Sequence Number 
BA = Int % Block Address 
LB = [sn, data] % Logical Block 

S = BA -> LB % State 
U 
W 

= [sn, ba, f: LB->LB]
= [ba, lb] 

% Update
% update in cache 

Un = A 
L 
UL 
C 

= SEQ U 
= SEQ Un 
= SET W 

VAR ss := S.s0() % Stable State 

A = S->(V, S) % Action 

FUNC vs(ba) -> LB = VAR w IN c | w.ba = ba => RET w.lb [*] RET ss(ba)
% This is the standard abstraction function for a cache 

The essential property is that updates to different blocks commute: w.ba # u.ba ==> w 
commutes with u, because u only looks at u.ba. Stated precisely: 

(ALL s | (ALL ba | ba # u.ba ==> u(s)(ba) = s(ba)
/\ (ALL s' | s(u.ba) = s'(u.ba) ==> u(s)(u.ba) = u(s')(u.ba)) ) 

So the guard in Install testing whether w is already installed is just 
(EXISTS u | u IN vl /\ u.ba = w.a)

because in Do we get w as W{ba:=u.ba, lb:=u(vs)(u.ba)}. 

END BufferPool 

Transactions meet the real world 

Various problems arise in using the transaction abstraction we have been discussing to code 
actual transactions such as ATM withdrawals or airline reservations. We mention the most 
important ones briefly. 

The most serious problems arise when a transaction includes changes to state that is not 
completely under the computer’s control. An ATM machine, for example, dispenses cash; once 
this has been done, there’s no straightforward way for a program to take back the cash, or even to 
be certain that the cash was actually dispensed. So neither undo nor log idempotence may be 
possible. Changing the state of a disk block has neither of these problems. 
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So the first question is: Did it get done?  The jargon for this is “testability”. Carefully engineered 
systems do as much as possible to provide the computer with feedback about what happened in 
the real world, whether it’s dispensing money, printing a check, or unlocking a door. This means 
having sensors that are independent of actuators and have a high probability of being able to 
detect whether or not an intended physical state transition occurred. It also means designing the 
computer-device interface so that after a crash the computer can test whether the device received 
and performed a particular action; hence the name “testability”. 

The second question is: Is undo possible?  The jargon for this is “compensation”. Carefully 
engineered systems include methods for undoing at least the important effects of changes in the 
state of the world. This might involve executing some kind of compensating transaction, for 
instance, to reduce the size of the next order if too much is sent in the current one, or to issue a 
stop payment order for a check that was printed erroneously. Or it might require manual 
intervention, for instance, calling up the bank customer and asking what really happened in 
yesterday’s ATM transaction. Usually compensation is not perfect. 

Because compensation is complicated and imperfect, the first line of defense against the 
problems of undo is to minimize the probability that a transaction involving real-world state 
changes will have to abort. To do this, break it into two transactions. The first runs entirely inside 
the computer, and it makes all the internal state changes as well as posting instructions for the 
external state changes that are required. The second is as simple as possible; it just executes the 
posted external changes. Often the second transaction is thought of as a message system that is 
responsible for reliably delivering an action message to a physical device, and also for using the 
testability features to ensure that the action is taken exactly once. 

The other major difficulty in transactions that interact with the world arises only with concurrent 
transactions. It has to do with input: if the transaction requires a round trip from the computer to 
a user and back it might take a long time, because users are slow and easily distracted. For 
example, a reservation transaction might accept a travel request, display flight availability, and 
ask the user to choose a flight. If the transaction is supposed to be atomic, seats on the displayed 
flights must remain available until the user makes her choice, and hence can’t be sold to other 
customers. To avoid these problems, systems usually insist that a single transaction begin with 
user input, end with user output, and involve no other interactions with the user. So the 
reservation example would be broken into two transactions, one inquiring about flight 
availability and the other attempting to reserve a seat. Handout 20 on concurrent transactions 
discusses this issue in more detail. 
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