
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science


6.827 Multithreaded Parallelism: Languages and Compilers 

Problem Set 1 

Please Remember: 1) You can work in groups of up to three people; include the names of all 
group members on all problems. 2) Turn in the answer to each problem as a separate packet. 3) 
Comment your code carefully and include output from sample runs. 

Problem 1 Numerical Integration 

This problem is intended to make you comfortable programming in functional languages, namely 
Haskell. The choice of the programming environment is entirely up to you – you can take a look at 

http://www.haskell.org/implementations.html 

and choose whatever you like. We recommend that you download and install The Haskell Interpreter 
Hugs available from 

http://www.haskell.org/hugs/ 

In order to make sure things work correctly, type the following excerpt as seen in Lecture 2 and 
save it as test.hs in your home directory: 

apply_n f n x =	 if n==0 then x 
else apply_n f (n-1) (f x) 

plus a b = apply_n ((+) 1) b a 
mult a b = apply_n ((+) a) b 0 
expon a b = apply_n ((*) a) b 1 

then run hugs and load the file by typing 

:load test.hs 



2 6.827 Problem Set 1 

You can now call one of the functions you have just specified by typing 

plus 3 4 

(Obviously, you should obtain 7). 

Now, back to the problem set. In this first problem, we examine two simple algorithms for numerical 
integration based on Simpson’s rule. 

Part a: 

Given a function f and an interval [a, b], Simpson’s rule says that the integral can be approximated 
as follows: 

I =

h

3

[f (a) + 4f (a + h) + f (a + 2h)]


where


h =

b − a


2


For better accuracy, the interval of integration [a, b] is divided into several smaller subintervals. 
Simpson’s rule is applied to each of the subintervals and the results are added to give the total 
integral. If the subintervals of [a, b] are all of the same size p, where p = 2h, then we have the 
Composite Strategy for integration. 

Write a Haskell program containing a function 

composite_strategy f a b n 

where 

f is the function to integrate 

a,b are the endpoints of the integration interval 

n is the number of subintervals such that h = (b − a)/2n 

Integrate some simple functions and try different values for n. 

Part b: 

If the subintervals of the integration are not all equal and can be changed as required, then we obtain 
an Adaptive Strategy for integration. A simple adaptive integration algorithm can be described as 
follows: 

1.	 Approximate the integral using Simpson’s rule over the entire interval [a, b]. Call this approx
imation old approx. 



6.827 Problem Set 1 3 

2. Compute the midpoint x of the interval: x = (b + a)/2. 

3.	 Approximate a new interval by applying Simpson’s rule to the subintervals [a, x] and [x, b] 
and add the two results. Call this approximation new approx. 

4.	 If the absolute value of the difference between new approx and old approx is within some limit 
sigma then return new approx. 

5.	 Otherwise, apply the adaptive strategy recursively to each of the subintervals, add the two 
results, and return the sum as the answer. 

Write a Haskell program that contains the function 

adaptive_strategy f a b sigma 

Make sure adaptive strategy takes advantage of the parallelism available in the algorithm. Try 
integrating several functions while varying the sigma parameter. 

Part c: 

How do the algorithms vary in complexity? Compare the accuracy of the answers. What factors 
affect the execution time and efficiency of the two strategies? 

Problem 2 Using λ combinators 

The next two problems on this problem set focus on the pure λ-calculus. We recommend that you 
take a look at the pH Book, Appendix A, before you move on with this problem set. The idea is 
to become comfortable with the reduction rules used, and with the important differences between 
some of the reduction strategies which can be used when applying those rules. 

In this problem, we shall write a few combinators in the pure λ-calculus to get familiar with the 
rules of λ-calculus. Here are the definitions of some useful combinators. 

TRUE = 
FALSE = 
COND = 
FST = 
SND = 
PAIR = 
n = 
SUC = 
PLUS = 
MUL = 

λx.λy.x

λx.λy.y

λx.λy.λz.x y z

λf.f TRUE

λf.f FALSE

λx.λy.λf.f x y

λf.λx.(f n x)

λn.λa.λb.a (n a b)

λm.λn.m SUC n

λm.λn.m (PLUS n) 0


Now, write the λ-terms corresponding to the following functions. 

• The boolean AND function. 



4 6.827 Problem Set 1 

• The boolean OR function. 

• The boolean NOT function. 

•	 The exponentiation function (EXP). You should write two expressions, one using MUL and 
the other without MUL (note: don’t eliminate MUL by substituting the body of the MUL 
combinator into your first definition—MUL only “stands for” its definition in the first place, 
so you’ve done nothing). 

•	 The function ONE? which tests whether the given number is 1. (Hint: use the data structure 
combinators. Don’t try to construct a lambda term from whole cloth.) 

•	 The function PRED which subtracts 1 from the given number. You may decide what to do 
when 0 is passed as an argument to PRED. (Extra credit: can you come up with a term T 
for which (SUC T) reduces to 0? If so, give the term; if not, explain why.) 

In addition to the given combinators, you are free to define any others which you think would be 
useful. 

Problem 3 Evaluation strategies for the λ calculus 

In lecture, Prof. Arvind discussed interpreters for the λ calculus, and gave two examples: call-by-
name, written cn(E), and call-by-value, written cv(E). We consider both of these interpreters to 
be finished when they return an answer in Weak Head Normal Form. In this problem, we’re going 
to look at similar interpreters which yield answers in β normal form—that is, an expression which 
cannot possibly be β-reduced anymore. 

Part a: 

First, consider the applicative order λ-calculus. Here, we pursue a leftmost innermost strategy 
(choose the leftmost redex, or the innermost such redex if the leftmost redex contains a redex). 
Reduce the following term, step by step, using this strategy. You will probably want to parenthesize 
the term fully before you decide which redex is innermost (remember if two redexes are equally far 
“in” when fully parenthesized, you must choose the leftmost one). 

(λx.λy.x) (λz.(λx.λy.x) z ((λx.z x)(λx.z x))) 

Part b: 

Write an interpreter, li(E), for the applicative order λ-calculus. Your answer should be similar to 
the call-by-value interpreter from class. 

Part c: 

Now consider the normal order λ-calculus. It should yield answers in normal form by using a 
leftmost outermost strategy (choose the leftmost redex, making sure it’s the outermost if several 



6.827 Problem Set 1 5 

redexes are nested). Using this strategy, reduce the following term: 

(λx.λy.x) (λz.(λx.λy.x) z ((λx.x x)(λx.x x))) 

Part d: 

Write a normal order interpreter lo(E). Your answer should work in a manner similar to the call-by-
name interpreter from class, though it will require a more elaborate set of rules. Hint: you’ll prob
ably want to use two slightly different sets of mutually recursive reduction rules. If you’re having 
trouble, figure out what your interpreter does with the term (λy.λz.y ((λx.xx)(λx.xx))) (λx.λy.y). 

Part e: 

What happens when you run li on the term from part c? Is the applicative order λ-calculus strongly 
normalizing? 

Problem 4 Recursion and confluence in λ and λlet 

Consider the following very simple term in the λ calculus with let bindings: 

let g = λx. g (g x); 
in g (λx. x) 

This term uses binding to set up a simple recursive function definition. In this problem we will 
examine how such a term might be represented in λ calculus. In doing so, we’d like to develop an 
intuition about why non-confluence might break down in let-bound calculi. 

Part a: 

Using instantiation, give two reductions of the above term which are not confluent—that is, they 
can never be brought back together. Argue why they must always remain distinct. 

Part b: 

We can translate the above term into λ calculus, yielding the following term; note how the subterms 
of the original term are kept intact: 

(λg. g (λx. x)) ((λg. (λx. g (x x)) (λx. g (x x))) (λg. λx. g (g x))) 

Give a translation for the two terms in the previous exercise, again preserving the right-hand sides 
of let bindings and the “in” part of the block. 

Part c: 

Can the above translation of the initial term be reduced to your translation of either of the other 
two terms in the λ calculus without let binding? If so, give the reduction. If it cannot, argue why 



6 6.827 Problem Set 1 

such a translation should not be possible or give an alternative translation for which it will be 
possible. 

Part d: 

Can the translation of your two terms be brought together in the λ calculus? If so, show the reduc
tions for each term. If not, explain why it would be impossible or give an alternative translation 
for which it is possible. 


