
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.827 Multithreaded Parallelism: Languages and Compilers

Problem Set 4

Problem 1 Core pH: Applicative Interpreter
The following data types are used to represent a simple functional language. Our language con
sists of constants (integers and booleans), variables, applications, abstractions and let-blocks. The
language syntax is very similar to that of λC ; the main difference is that we distinguish various
kinds of constants, and we use a list to represent all the bindings in a let (with the understanding
that the order of list elements doesn’t matter).

data Exp = IntConst Int

| BoolConst Bool

| Var Ident

| App Exp Exp

| Func Ident Exp

| Cond Exp Exp Exp

| Prim PrimId [Exp]

| Let [(Ident, Exp)] Exp

deriving (Eq,Show)

data Ident = Varid Int deriving (Eq,Show)

data PrimId = Add | Sub | Mul | Div | Eq | Less | Greater

deriving (Eq,Show)

Your task in this problem will be to write a simple applicative-order (call-by-value) interpreter for
this small language.

Part a:

You should begin by writing a version of your interpreter for the pure λ calculus. This means your

interpreter need only handle the Func, Var, and App disjuncts in the grammar given above. You

should use the applicative interpreter discussed in lecture as a guide (this means you will need to

come up with some sort of representation of substitution, or carry around an environment). You

should evaluate terms to Weak Head Normal Form.

Translate the following term into a data structure (this is straightforward to do by hand) and show

what your interpreter returns as a result when given this input:

(\a b -> b a) ((\x y -> x (x y)) (\u v -> v)) (\z -> z)

Part b:
Now add constants, primitives, and conditionals to your interpreter. Try it out on the following
example:

6.827 Problem Set 4 2

(\ a -> if (a*3 == 9) then (\b c -> b) else (\b c -> c)) 14 False True

Part c:

Finally, add recursive let-bindings to your interpreter. This is the most difficult part; it’s very
important that you be careful about the scoping of names. The crucial test of this will be whether
mutually recursive functions are actually mutually recursive. If you are using environments for
evaluation (and it’s nearly impossible to do let-blocks without such a notion) you might find it
easiest to create an extended environment with bindings for all the new values in a block, and
evaluate each of those bindings non-strictly in the extended environment. Try this example:

let odd = \x -> if x==1 then oddresult else even (x - 1)

even = \x -> if x==0 then evenresult else odd (x - 1)

oddresult = 17 + 13 * evenresult

evenresult = 43

in odd 327

Problem 2 Implementing Queues with M-Structures
In this problem, we will define a queue abstraction using M-Structures. A queue is represented as
a product type consisting of fields for front, qsize, buflen, buffer. The front, qsize,
and buffer fields are represented as M-Structures so that they can be mutated as the queue
changes.

data MQueue a = MQueue (MCell Int) -- front

(MCell Int) -- qsize

Int -- buflen

(MArray Int a) -- buffer

The field buflen contains the length of the queue buffer, qsize contains the number of elements
in the queue, and front contains the offset of the next element to be dequeued. We enqueue
elements by “putting” them at offset (front + qsize) modulo buflen and increasing the
qsize, and we dequeue elements by “taking” the element at offset front, increasing front by
one (modulo buflen) and decreasing qsize by one.

The syntax for M-Structure fields in algebraic types is different in the compiler than in the pH
book. As a reminder, for the current Linux compiler, there are extensive language notes in

/mit/6.827/phc-new/phc/docs/language

Part a:

Write a function makeQueue which takes one parameter, buflen, and returns an empty

MQueue with a buffer of appropriate size.

Part b:

Write a function enqueue which takes an MQueue and an object and places the object in the

6.827 Problem Set 4 3

queue. Analyze your function carefully to make sure that there are no race conditions1 or deadlock
possibilities! Also, be sure to generate an error if an attempt is made to enqueue an element into a
queue that is already full.

Test your implementation of enqueue by writing another function, testEnqueue, that per-
forms some number of enqueue operations in parallel (that is, there should be no barriers or data
dependencies between them).

Part c:

In this part, you are to write the definition of dequeue, which takes a queue and returns the
element pointed to by the queue’s front, increments the queue’s front and decrements the
qsize. dequeue also takes in a default value to be returned in case the queue is empty.

Write an additional function, testDequeue, to test your implementation of dequeue.

Part d:

Write a function testEnqueueDequeue that takes two parameters, a queue and a number n,
and performs n enqueues and dequeues in parallel.

1A race condition exists in a program when there is the opportunity that a particular ordering of events might lead
to incorrect behavior.

