
M assachusetts I nstitute of T echnology 
Department of E lectrical E ngineering and C omputer Science 

6. 827 M ult it hr eaded P ar al lel ism : L anguages and C om piler s 

Lecture 12 

6.827 Mid-Term Quiz 
Professor Arvind 

N am e 

E m ail 

R emember to write your name on every page! 

T his is a closed book quiz.

Access to lecture notes is permitted.


1hr� 30min

11 Pages


P r oblem 1 30 P oint s 
P r oblem 2 20 P oint s 
P r oblem 3 32 P oint s 
P r oblem 4 18 P oint s 

T ot al 100 P oint s 



� �� � 
� �� � 

6.827 Quiz Name 2


Problem 1 Reduction 

To make the expressions in this problem easier to view, we have used braces to underline terms 
which are contained between matching parentheses. 

Part 1-1: (10 points) 

Reduce the following λ-calculus expression, in any order you choose, until there are no more redexes 
in the expression. Give all the intermediate steps. 

λz. ((λx. λz. z (x z)) (λf. z f )) (λx. x) 
� �� � � �� �� �� � 



� �� � 
� �� � 

6.827 Quiz Name 3


Part 1-2: (10 points) 

Reduce the following expression to normal form using the normal order reduction strategy. Give 
all the intermediate steps in the reduction. If you discover that the reduction will not terminate, 
stop and indicate as much. 

(λx. λy. x (λg. (g x) (g y))	 (λx. x)) (λx. λy. x y) 
� �� � � �� �� �� � � �� � 



� �� � 
� �� � 

6.827 Quiz Name 4


Part 1-3: (10 points) 

Reduce the following expression to normal form using the applicative order reduction strat­
egy. Give all the intermediate steps in the reduction. If you discover that the reduction will not 
terminate, stop and indicate as much. 

(λx. λy. x) (λz. (λx. λy. x) z ((λx. z x) (λx. z x))) 
� �� � � �� � � �� � � �� � 



6.827 Quiz Name 5


Problem 2 Recursion 

In class, we defined a fixed-point operator Y which produces the least fixed-point of a recursive 
definition. That is, it solves the equation: 

Y F = F (Y F) (1) 

This equation simply says that if we apply the reduction rules to the expression (Y F), we can 
reduce it to the expression F (Y F). 

Part 2-1: (10 points) 

We said that the combinator which satisfies this condition is: 

Y = (λf. (λx. f (x x)) (λx. f (x x))) 

However, there are many other equally valid definitions for this combinator. Consider the following 
definition: 

Y� = (λx. λy. y (x x y)) (λx. λy. y (x x y)) 

Show that Y� is a least fixed-point operator by showing that it satisfies equation (1). 



6.827 Quiz Name 6


Part 2-2: (10 points) 

Given the following recursive definition: 

length l = case l of 
[] -> 0 
(x:xs) -> 1 + length xs 

construct a non-recursive expression for length using the fixed-point operator Y. 



6.827 Quiz Name 7


Problem 3 Hindley Milner Types 

Give the Hindley-Milner types for the following functions. Be sure to give the most general type 
for any functions which are polymorphic. Assume that there is no overloading, that all arithmetic 
functions operate on values of type Int, and that all comparisons return results of type Bool. 
Some functions may not type, but instead produce a type error. In those cases, indicate that the 
expression is not type correct and explain why. 

3-1: (3 points) 

curry f x y = f (x,y) 

3-2: (3 points) 

repeat x = let 
xs = (x:xs) 

in 
xs 

3-3: (6 points) 

f x y = f x y 

g x y = g y x 

h x y = if (x == 0)	 then f x y 
else g y x 



6.827 Quiz Name 8


3-4: (4 points) 

max1 f n m = let 
a = f n 
b = f m 
d = a > b 

in 
if (f d) then a 

else b 

3-5: (4 points) 

max2 n m = let 
f x = x 
a = f n 
b = f m 
d = (a > b) 

in 
if (f d) then a 

else b 



6.827 Quiz Name 9


3-6: (8 points) 

Given the following types for map, (&&) (the boolean AND operator), and (.) (an infix operator 
which composes functions), determine the types of the other three functions: 

map :: (a -> b) -> [a] -> [b] 

(&&) :: Bool -> Bool -> Bool 

(.) :: (b -> a) -> (c -> b) -> c -> a 

foldr f z l = case l of 
[] -> z 
(x:xs) -> f x (foldr f z xs) 

and = foldr (&&) True 

all p = and . map p 

3-7: (4 points) 

unzip = let 
f (a,b) (as,bs) = ((a:as),(b:bs)) 

in 
foldr f ([],[]) 



6.827 Quiz Name 10


Problem 4 Typechecking Using the Class System 

This problem is the same as the previous problem, except that we have added overloading to our 
language with the following type classes: 

class Eq a where 
(==), (/=) :: a -> a -> Bool 

class (Eq a) => Num a where 
(+), (-), (*) :: a -> a -> a 
negate :: a -> a 
fromInteger :: Integer -> a 

class (Num a) => Fractional a where 
(/) :: a -> a -> a 
recip :: a -> a 

class (Num a) => Integral a where 
div, mod :: a -> a -> a 

In addition to the types Bool and Int from the previous problem, we also have the types Float 
and Char. There is an instance of the Eq class for all four types. The Num class is instanced for the 
numeric types Int and Float. The only instance of the Fractional class is for type Float and 
the only instance of the Integral class is for type Int. 

Remember that the function fromInteger in the Num class allows us to overload whole-number 
constants (so 5 :: (Num a) => a). However, floating-point constants have the type Float. 

Identify the type of each of the following expressions or indictate that the expression does not type 
check (and explain why): 

4-1: (4 points) 

y_intercept a b = (negate b) / a 



6.827 Quiz Name 11


4-2: (4 points) 

quadratic a b c = ((b * b) - 4 * a * c) / (2 * a) 

4-3: (5 points) 

ones_digit n = mod n 10.0 

4-4: (5 points) 

gcd x y = if (y == 0)	 then x 
else gcd y (mod x y) 


