
  
 

 
 

 

 

  
 

 

  
 

 

 

6.828 Fall 2012 Lab 1: PC Bootstrap and GCC Calling Conventions 

6.828 Fall 2012 Lab 1: Booting a PC 
Handed out Lecture 1
 
Due one day after Lecture 3
 

Introduction 

This lab is split into three parts. The first part concentrates on getting familiarized with x86 assembly language, the 
QEMU x86 emulator, and the PC's power-on bootstrap procedure. The second part examines the boot loader for our 
6.828 kernel, which resides in the boot directory of the lab tree. Finally, the third part delves into the initial template 
for our 6.828 kernel itself, named JOS, which resides in the kernel directory. 

Software Setup 

The original files you will need for this and subsequent lab assignments in this course were distributed using the Git 
version control system. To learn more about Git, take a look at the Git user's manual, or, if you are already familiar 
with other version control systems, you may find this CS-oriented overview of Git useful. 

The course Git repository has been archived to the OCW site. It is recommended you set up a Git repository on your 
computer. 

Git allows you to keep track of the changes you make to the code. For example, if you are finished with one of the
 
exercises, and want to checkpoint your progress, you can commit your changes by running:
 

% git commit -am 'my solution for lab1 exercise 9'
Created commit 60d2135: my solution for lab1 exercise 9

 1 files changed, 1 insertions(+), 0 deletions(-)
 
% 

You can keep track of your changes by using the git diff command. Running git diff will display the changes to 
your code since your last commit, and git diff origin/lab1 will display the changes relative to the initial code 
supplied for this lab. Here, origin/lab1 is the name of the git branch with the initial code you downloaded from our 
server for this assignment. 

If you are working on a non-Athena machine, you'll need to install qemu and possibly gcc following the directions on 
the tools page. We've made several useful debugging changes to qemu and some of the later labs depend on these 
patches, so you must build your own. If your machine uses a native ELF toolchain (such as Linux and most BSD's, but 
notably not OS X), you can simply install gcc from your package manager. Otherwise, follow the directions on the 
tools page. 

Hand-In Procedure 

We will be grading your solutions with a grading program. You can run make grade  to test your solutions with the 
grading program. 

Part 1: PC Bootstrap 

The purpose of the first exercise is to introduce you to x86 assembly language and the PC bootstrap process, and to get 
you started with QEMU and QEMU/GDB debugging. You will not have to write any code for this part of the lab, but 
you should go through it anyway for your own understanding and be prepared to answer the questions posed below. 

Getting Started with x86 assembly 
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If you are not already familiar with x86 assembly language, you will quickly become familiar with it during this 
course! The PC Assembly Language Book is an excellent place to start. Hopefully, the book contains mixture of new 
and old material for you. 

Warning: Unfortunately the examples in the book are written for the NASM assembler, whereas we will be using the 
GNU assembler. NASM uses the so-called Intel syntax while GNU uses the AT&T syntax. While semantically 
equivalent, an assembly file will differ quite a lot, at least superficially, depending on which syntax is used. Luckily the 
conversion between the two is pretty simple, and is covered in Brennan's Guide to Inline Assembly. 

Exercise 1. Familiarize yourself with the assembly language materials available on the 6.828 reference page. You don't 
have to read them now, but you'll almost certainly want to refer to some of this material when reading and writing x86 
assembly. 

We do recommend reading the section "The Syntax" in Brennan's Guide to Inline Assembly. It gives a good (and quite 
brief) description of the AT&T assembly syntax we'll be using with the GNU assembler in JOS. 

Certainly the definitive reference for x86 assembly language programming is Intel's instruction set architecture 
reference, which you can find on the 6.828 reference page in two flavors: an HTML edition of the old 80386 
Programmer's Reference Manual, which is much shorter and easier to navigate than more recent manuals but describes 
all of the x86 processor features that we will make use of in 6.828; and the full, latest and greatest IA-32 Intel 
Architecture Software Developer's Manuals from Intel, covering all the features of the most recent processors that we 
won't need in class but you may be interested in learning about. An equivalent (and often friendlier) set of manuals is 
available from AMD. Save the Intel/AMD architecture manuals for later or use them for reference when you want to 
look up the definitive explanation of a particular processor feature or instruction. 

Simulating the x86 

Instead of developing the operating system on a real, physical personal computer (PC), we use a program that 
faithfully emulates a complete PC: the code you write for the emulator will boot on a real PC too. Using an emulator 
simplifies debugging; you can, for example, set break points inside of the emulated x86, which is difficult to do with 
the silicon version of an x86. 

In 6.828 we will use the QEMU Emulator, a modern and relatively fast emulator. While QEMU's built-in monitor 
provides only limited debugging support, QEMU can act as a remote debugging target for the GNU debugger (GDB), 
which we'll use in this lab to step through the early boot process. 

To get started, extract the Lab 1 files into your own directory as described above in "Software Setup", then type make 
(or gmake on BSD systems) in the lab directory to build the minimal 6.828 boot loader and kernel you will start with. 
(It's a little generous to call the code we're running here a "kernel," but we'll flesh it out throughout the semester.) 

% cd lab
 
% make
 
+ as kern/entry.S
+ cc kern/init.c
+ cc kern/console.c
+ cc kern/monitor.c
+ cc kern/printf.c
+ cc lib/printfmt.c
+ cc lib/readline.c
+ cc lib/string.c
+ ld obj/kern/kernel
+ as boot/boot.S
+ cc -Os boot/main.c
+ ld boot/boot

boot block is 414 bytes (max 510)

+ mk obj/kern/kernel.img 

(If you get errors like "undefined reference to `__udivdi3'", you probably don't have the 32-bit gcc multilib. If you're 
running Debian or Ubuntu, try installing the gcc-multilib package.) 
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Now you're ready to run QEMU, supplying the file obj/kern/kernel.img, created above, as the contents of the 
emulated PC's "virtual hard disk." This hard disk image contains both our boot loader (obj/boot/boot) and our kernel 
(obj/kernel). 

% make qemu 

This executes QEMU with the options required to set the hard disk and direct serial port output to the terminal. Some 
text should appear in the QEMU window: 

Booting from Hard Disk...

6828 decimal is XXX octal!
 
entering test_backtrace 5

entering test_backtrace 4

entering test_backtrace 3

entering test_backtrace 2

entering test_backtrace 1

entering test_backtrace 0

leaving test_backtrace 0

leaving test_backtrace 1

leaving test_backtrace 2

leaving test_backtrace 3

leaving test_backtrace 4

leaving test_backtrace 5

Welcome to the JOS kernel monitor!
 
Type 'help' for a list of commands.

K>
 

Everything after 'Booting from Hard Disk...' was printed by our skeletal JOS kernel; the K> is the prompt printed 
by the small monitor, or interactive control program, that we've included in the kernel. These lines printed by the 
kernel will also appear in the regular shell window from which you ran QEMU. This is because for testing and lab 
grading purposes we have set up the JOS kernel to write its console output not only to the virtual VGA display (as seen 
in the QEMU window), but also to the simulated PC's virtual serial port, which QEMU in turn outputs to its own 
standard output. Likewise, the JOS kernel will take input from both the keyboard and the serial port, so you can give it 
commands in either the VGA display window or the terminal running QEMU. Alternatively, you can use the serial 
console without the virtual VGA by running make qemu-nox. 

There are only two commands you can give to the kernel monitor, help and kerninfo. 

K> help

help - display this list of commands

kerninfo - display information about the kernel

K> kerninfo
 
Special kernel symbols:


entry  f010000c (virt)  0010000c (phys)

etext  f0101a75 (virt)  00101a75 (phys)

edata  f0112300 (virt)  00112300 (phys)

end    f0112960 (virt)  00112960 (phys)


Kernel executable memory footprint: 75KB

K>
 

The help command is obvious, and we will shortly discuss the meaning of what the kerninfo command prints. 
Although simple, it's important to note that this kernel monitor is running "directly" on the "raw (virtual) hardware" of 
the simulated PC. This means that you should be able to copy the contents of obj/kern/kernel.img onto the first few 
sectors of a real hard disk, insert that hard disk into a real PC, turn it on, and see exactly the same thing on the PC's 
real screen as you did above in the QEMU window. (We don't recommend you do this on a real machine with useful 
information on its hard disk, though, because copying kernel.img onto the beginning of its hard disk will trash the 
master boot record and the beginning of the first partition, effectively causing everything previously on the hard disk to 
be lost!) 

The PC's Physical Address Space 

We will now dive into a bit more detail about how a PC starts up. A PC's physical address space is hard-wired to have 
the following general layout: 
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+------------------+ <- 0xFFFFFFFF (4GB)
 
|      32-bit  |

|  memory mapped  |

|  devices  |

| |

/\/\/\/\/\/\/\/\/\/\
 

/\/\/\/\/\/\/\/\/\/\

| |

|  Unused  |

| |

+------------------+ <- depends on amount of RAM
 
| |

| |

| Extended Memory  |

| |

| |

+------------------+ <- 0x00100000 (1MB)
 
|     BIOS ROM  |

+------------------+ <- 0x000F0000 (960KB)
 
|  16-bit devices, |
 
|  expansion ROMs  |

+------------------+ <- 0x000C0000 (768KB)
 
|   VGA Display  |

+------------------+ <- 0x000A0000 (640KB)
 
| |

|    Low Memory  |

| |

+------------------+ <- 0x00000000
 

The first PCs, which were based on the 16-bit Intel 8088 processor, were only capable of addressing 1MB of physical 
memory. The physical address space of an early PC would therefore start at 0x00000000 but end at 0x000FFFFF 
instead of 0xFFFFFFFF. The 640KB area marked "Low Memory" was the only random-access memory (RAM) that an 
early PC could use; in fact the very earliest PCs only could be configured with 16KB, 32KB, or 64KB of RAM! 

The 384KB area from 0x000A0000 through 0x000FFFFF was reserved by the hardware for special uses such as video 
display buffers and firmware held in non-volatile memory. The most important part of this reserved area is the Basic 
Input/Output System (BIOS), which occupies the 64KB region from 0x000F0000 through 0x000FFFFF. In early PCs 
the BIOS was held in true read-only memory (ROM), but current PCs store the BIOS in updateable flash memory. The 
BIOS is responsible for performing basic system initialization such as activating the video card and checking the 
amount of memory installed. After performing this initialization, the BIOS loads the operating system from some 
appropriate location such as floppy disk, hard disk, CD-ROM, or the network, and passes control of the machine to the 
operating system. 

When Intel finally "broke the one megabyte barrier" with the 80286 and 80386 processors, which supported 16MB and 
4GB physical address spaces respectively, the PC architects nevertheless preserved the original layout for the low 1MB 
of physical address space in order to ensure backward compatibility with existing software. Modern PCs therefore have 
a "hole" in physical memory from 0x000A0000 to 0x00100000, dividing RAM into "low" or "conventional memory" 
(the first 640KB) and "extended memory" (everything else). In addition, some space at the very top of the PC's 32-bit 
physical address space, above all physical RAM, is now commonly reserved by the BIOS for use by 32-bit PCI 
devices. 

Recent x86 processors can support more than 4GB of physical RAM, so RAM can extend further above 0xFFFFFFFF. 
In this case the BIOS must arrange to leave a second hole in the system's RAM at the top of the 32-bit addressable 
region, to leave room for these 32-bit devices to be mapped. Because of design limitations JOS will use only the first 
256MB of a PC's physical memory anyway, so for now we will pretend that all PCs have "only" a 32-bit physical 
address space. But dealing with complicated physical address spaces and other aspects of hardware organization that 
evolved over many years is one of the important practical challenges of OS development. 

The ROM BIOS 

In this portion of the lab, you'll use QEMU's debugging facilities to investigate how an IA-32 compatible computer 
boots. 
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Open two terminal windows. In one, enter make qemu-gdb (or make qemu-nox-gdb). This starts up QEMU, but 
QEMU stops just before the processor executes the first instruction and waits for a debugging connection from GDB. 
In the second terminal, from the same directory you ran make, run gdb. You should see something like this, 

% gdb

GNU gdb (GDB) 6.8-debian

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
 
and "show warranty" for details.

This GDB was configured as "i486-linux-gnu".

+ target remote localhost:1234

The target architecture is assumed to be i8086

[f000:fff0] 0xffff0:  ljmp  $0xf000,$0xe05b

0x0000fff0 in ?? ()

+ symbol-file obj/kern/kernel

(gdb)
 

We provided a .gdbinit file that set up GDB to debug the 16-bit code used during early boot and directed it to attach 
to the listening QEMU. 

The following line: 

[f000:fff0] 0xffff0:  ljmp  $0xf000,$0xe05b 

is GDB's disassembly of the first instruction to be executed. From this output you can conclude a few things: 

The IBM PC starts executing at physical address 0x000ffff0, which is at the very top of the 64KB area reserved
 
for the ROM BIOS.
 
The PC starts executing with CS = 0xf000 and IP = 0xfff0.
 
The first instruction to be executed is a jmp instruction, which jumps to the segmented address CS = 0xf000 and
 
IP = 0xe05b.
 

Why does QEMU start like this? This is how Intel designed the 8088 processor, which IBM used in their original PC. 
Because the BIOS in a PC is "hard-wired" to the physical address range 0x000f0000-0x000fffff, this design ensures 
that the BIOS always gets control of the machine first after power-up or any system restart - which is crucial because 
on power-up there is no other software anywhere in the machine's RAM that the processor could execute. The QEMU 
emulator comes with its own BIOS, which it places at this location in the processor's simulated physical address space. 
On processor reset, the (simulated) processor enters real mode and sets CS to 0xf000 and the IP to 0xfff0, so that 
execution begins at that (CS:IP) segment address. How does the segmented address 0xf000:fff0 turn into a physical 
address? 

To answer that we need to know a bit about real mode addressing. In real mode (the mode that PC starts off in), 
address translation works according to the formula: physical address = 16 * segment  + offset. So, when the PC sets CS 
to 0xf000 and IP to 0xfff0, the physical address referenced is:

   16 * 0xf000 + 0xfff0   # in hex multiplication by 16 is

   = 0xf0000 + 0xfff0     # easy--just append a 0.

   = 0xffff0
 

0xffff0 is 16 bytes before the end of the BIOS (0x100000). Therefore we shouldn't be surprised that the first thing 
that the BIOS does is jmp backwards to an earlier location in the BIOS; after all how much could it accomplish in just 
16 bytes? 

Exercise 2. Use GDB's si (Step Instruction) command to trace into the ROM BIOS for a few more instructions, and 
try to guess what it might be doing. You might want to look at Phil Storrs I/O Ports Description, as well as other 
materials on the 6.828 reference materials page. No need to figure out all the details - just the general idea of what the 
BIOS is doing first. 
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When the BIOS runs, it sets up an interrupt descriptor table and initializes various devices such as the VGA display. 
This is where the "Starting SeaBIOS" message you see in the QEMU window comes from. 

After initializing the PCI bus and all the important devices the BIOS knows about, it searches for a bootable device 
such as a floppy, hard drive, or CD-ROM. Eventually, when it finds a bootable disk, the BIOS reads the boot loader 
from the disk and transfers control to it. 

Part 2: The Boot Loader 

Floppy and hard disks for PCs are divided into 512 byte regions called sectors. A sector is the disk's minimum transfer 
granularity: each read or write operation must be one or more sectors in size and aligned on a sector boundary. If the 
disk is bootable, the first sector is called the boot sector, since this is where the boot loader code resides. When the 
BIOS finds a bootable floppy or hard disk, it loads the 512-byte boot sector into memory at physical addresses 0x7c00 
through 0x7dff, and then uses a jmp instruction to set the CS:IP to 0000:7c00, passing control to the boot loader. Like 
the BIOS load address, these addresses are fairly arbitrary - but they are fixed and standardized for PCs. 

The ability to boot from a CD-ROM came much later during the evolution of the PC, and as a result the PC architects 
took the opportunity to rethink the boot process slightly. As a result, the way a modern BIOS boots from a CD-ROM 
is a bit more complicated (and more powerful). CD-ROMs use a sector size of 2048 bytes instead of 512, and the 
BIOS can load a much larger boot image from the disk into memory (not just one sector) before transferring control to 
it. For more information, see the "El Torito" Bootable CD-ROM Format Specification. 

For 6.828, however, we will use the conventional hard drive boot mechanism, which means that our boot loader must 
fit into a measly 512 bytes. The boot loader consists of one assembly language source file, boot/boot.S, and one C 
source file, boot/main.c Look through these source files carefully and make sure you understand what's going on. The 
boot loader must perform two main functions: 

1. First, the boot loader switches the processor from real mode to 32-bit protected mode, because it is only in this 
mode that software can access all the memory above 1MB in the processor's physical address space. Protected 
mode is described briefly in sections 1.2.7 and 1.2.8 of PC Assembly Language, and in great detail in the Intel 
architecture manuals. At this point you only have to understand that translation of segmented addresses 
(segment:offset pairs) into physical addresses happens differently in protected mode, and that after the transition 
offsets are 32 bits instead of 16. 

2. Second, the boot loader reads the kernel from the hard disk by directly accessing the IDE disk device registers 
via the x86's special I/O instructions. If you would like to understand better what the particular I/O instructions 
here mean, check out the "IDE hard drive controller" section on the 6.828 reference page. You will not need to 
learn much about programming specific devices in this class: writing device drivers is in practice a very 
important part of OS development, but from a conceptual or architectural viewpoint it is also one of the least 
interesting. 

After you understand the boot loader source code, look at the file obj/boot/boot.asm. This file is a disassembly of 
the boot loader that our GNUmakefile creates after compiling the boot loader. This disassembly file makes it easy to 
see exactly where in physical memory all of the boot loader's code resides, and makes it easier to track what's 
happening while stepping through the boot loader in GDB. Likewise, obj/kern/kernel.asm contains a disassembly of 
the JOS kernel, which can often be useful for debugging. 

You can set address breakpoints in GDB with the b command. For example, b *0x7c00 sets a breakpoint at address 
0x7C00. Once at a breakpoint, you can continue execution using the c and si commands: c causes QEMU to continue 
execution until the next breakpoint (or until you press Ctrl-C in GDB), and si N steps through the instructions N at a 
time. 

To examine instructions in memory (besides the immediate next one to be executed, which GDB prints automatically), 
you use the x/i command. This command has the syntax x/Ni ADDR, where N is the number of consecutive 
instructions to disassemble and ADDR is the memory address at which to start disassembling. 
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Exercise 3. Take a look at the lab tools guide, especially the section on GDB commands. Even if you're familiar with 
GDB, this includes some esoteric GDB commands that are useful for OS work. 

Set a breakpoint at address 0x7c00, which is where the boot sector will be loaded. Continue execution until that 
breakpoint. Trace through the code in boot/boot.S, using the source code and the disassembly file 
obj/boot/boot.asm to keep track of where you are. Also use the x/i command in GDB to disassemble sequences of 
instructions in the boot loader, and compare the original boot loader source code with both the disassembly in 
obj/boot/boot.asm and GDB. 

Trace into bootmain() in boot/main.c, and then into readsect(). Identify the exact assembly instructions that 
correspond to each of the statements in readsect(). Trace through the rest of readsect() and back out into 
bootmain(), and identify the begin and end of the for loop that reads the remaining sectors of the kernel from the 
disk. Find out what code will run when the loop is finished, set a breakpoint there, and continue to that breakpoint. 
Then step through the remainder of the boot loader. 

Be able to answer the following questions: 

At what point does the processor start executing 32-bit code? What exactly causes the switch from 16- to 32-bit
 
mode?
 
What is the last instruction of the boot loader executed, and what is the first instruction of the kernel it just
 
loaded?
 
Where is the first instruction of the kernel?
 
How does the boot loader decide how many sectors it must read in order to fetch the entire kernel from disk?
 
Where does it find this information?
 

Loading the Kernel 

We will now look in further detail at the C language portion of the boot loader, in boot/main.c. But before doing so, 
this is a good time to stop and review some of the basics of C programming. 

Exercise 4. Read about programming with pointers in C. The best reference for the C language is The C Programming 
Language by Brian Kernighan and Dennis Ritchie (known as 'K&R'). 

Read 5.1 (Pointers and Addresses) through 5.5 (Character Pointers and Functions) in K&R. Then download the code 
for pointers.c, run it, and make sure you understand where all of the printed values come from. In particular, make sure 
you understand where the pointer addresses in lines 1 and 6 come from, how all the values in lines 2 through 4 get 
there, and why the values printed in line 5 are seemingly corrupted. 

There are other references on pointers in C, though not as strongly recommended. 

Warning: Unless you are already thoroughly versed in C, do not skip or even skim this reading exercise. If you do not 
really understand pointers in C, you will suffer untold pain and misery in subsequent labs, and then eventually come to 
understand them the hard way. Trust us; you don't want to find out what "the hard way" is. 

To make sense out of boot/main.c you'll need to know what an ELF binary is. When you compile and link a C 
program such as the JOS kernel, the compiler transforms each C source ('.c') file into an object ('.o') file containing 
assembly language instructions encoded in the binary format expected by the hardware. The linker then combines all of 
the compiled object files into a single binary image such as obj/kern/kernel, which in this case is a binary in the 
ELF format, which stands for "Executable and Linkable Format". 

Full information about this format is available in the ELF specification, but you will not need to delve very deeply into 
the details of this format in this class. Although as a whole the format is quite powerful and complex, most of the 
complex parts are for supporting dynamic loading of shared libraries, which we will not do in this class. 
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For purposes of 6.828, you can consider an ELF executable to be a header with loading information, followed by 
several program sections, each of which is a contiguous chunk of code or data intended to be loaded into memory at a 
specified address. The boot loader does not modify the code or data; it loads it into memory and starts executing it. 

An ELF binary starts with a fixed-length ELF header, followed by a variable-length program header listing each of 
the program sections to be loaded. The C definitions for these ELF headers are in inc/elf.h. The program sections 
we're interested in are: 

.text: The program's executable instructions. 

.rodata: Read-only data, such as ASCII string constants produced by the C compiler. (We will not bother 
setting up the hardware to prohibit writing, however.) 
.data: The data section holds the program's initialized data, such as global variables declared with initializers 
like int x = 5;. 

When the linker computes the memory layout of a program, it reserves space for uninitialized global variables, such as 
int x;, in a section called .bss that immediately follows .data in memory. C requires that "uninitialized" global 
variables start with a value of zero. Thus there is no need to store contents for .bss in the ELF binary; instead, the 
linker records just the address and size of the .bss section. The loader or the program itself must arrange to zero the 
.bss section. 

Examine the full list of the names, sizes, and link addresses of all the sections in the kernel executable by typing: 

% i386-jos-elf-objdump -h obj/kern/kernel 

You can substitute objdump for i386-jos-elf-objdump if your computer uses an ELF toolchain by default like most 
modern Linuxen and BSDs. 

You will see many more sections than the ones we listed above, but the others are not important for our purposes. 
Most of the others are to hold debugging information, which is typically included in the program's executable file but 
not loaded into memory by the program loader. 

Take particular note of the "VMA" (or link address) and the "LMA" (or load address) of the .text section. The load 
address of a section is the memory address at which that section should be loaded into memory. In the ELF object, this 
is stored in the ph->p_pa field (in this case, it really is a physical address, though the ELF specification is vague on the 
actual meaning of this field). 

The link address of a section is the memory address from which the section expects to execute. The linker encodes the 
link address in the binary in various ways, such as when the code needs the address of a global variable, with the result 
that a binary usually won't work if it is executing from an address that it is not linked for. (It is possible to generate 
position-independent code that does not contain any such absolute addresses. This is used extensively by modern 
shared libraries, but it has performance and complexity costs, so we won't be using it in 6.828.) 

Typically, the link and load addresses are the same. For example, look at the .text section of the boot loader: 

% i386-jos-elf-objdump -h obj/boot/boot.out 

The BIOS loads the boot sector into memory starting at address 0x7c00, so this is the boot sector's load address. This 
is also where the boot sector executes from, so this is also its link address. We set the link address by passing -Ttext 
0x7C00 to the linker in boot/Makefrag, so the linker will produce the correct memory addresses in the generated code. 

Exercise 5. Trace through the first few instructions of the boot loader again and identify the first instruction that would 
"break" or otherwise do the wrong thing if you were to get the boot loader's link address wrong. Then change the link 
address in boot/Makefrag to something wrong, run make clean , recompile the lab with make, and trace into the boot 
loader again to see what happens. Don't forget to change the link address back and make clean  again afterward! 

Look back at the load and link addresses for the kernel. Unlike the boot loader, these two addresses aren't the same: the 
8
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kernel is telling the boot loader to load it into memory at a low address (1 megabyte), but it expects to execute from a 
high address. We'll dig in to how we make this work in the next section. 

Besides the section information, there is one more field in the ELF header that is important to us, named e_entry. This 
field holds the link address of the entry point in the program: the memory address in the program's text section at 
which the program should begin executing. You can see the entry point: 

% i386-jos-elf-objdump -f obj/kern/kernel 

You should now be able to understand the minimal ELF loader in boot/main.c. It reads each section of the kernel
 
from disk into memory at the section's load address and then jumps to the kernel's entry point.
 

Exercise 6. We can examine memory using GDB's x command. The GDB manual has full details, but for now, it is 
enough to know that the command x/Nx ADDR prints N words of memory at ADDR. (Note that both 'x's in the command 
are lowercase.) Warning: The size of a word is not a universal standard. In GNU assembly, a word is two bytes (the 'w' 
in xorw, which stands for word, means 2 bytes). 

Reset the machine (exit QEMU/GDB and start them again). Examine the 8 words of memory at 0x00100000 at the 
point the BIOS enters the boot loader, and then again at the point the boot loader enters the kernel. Why are they 
different? What is there at the second breakpoint? (You do not really need to use QEMU to answer this question. Just 
think.) 

Part 3: The Kernel 

We will now start to examine the minimal JOS kernel in a bit more detail. (And you will finally get to write some
 
code!). Like the boot loader, the kernel begins with some assembly language code that sets things up so that C
 
language code can execute properly.
 

Using virtual memory to work around position dependence 

When you inspected the boot loader's link and load addresses above, they matched perfectly, but there was a (rather 
large) disparity between the kernel's link address (as printed by objdump) and its load address. Go back and check both 
and make sure you can see what we're talking about. (Linking the kernel is more complicated than the boot loader, so 
the link and load addresses are at the top of kern/kernel.ld.) 

Operating system kernels often like to be linked and run at very high virtual address, such as 0xf0100000, in order to 
leave the lower part of the processor's virtual address space for user programs to use. The reason for this arrangement 
will become clearer in the next lab. 

Many machines don't have any physical memory at address 0xf0100000, so we can't count on being able to store the 
kernel there. Instead, we will use the processor's memory management hardware to map virtual address 0xf0100000 
(the link address at which the kernel code expects to run) to physical address 0x00100000 (where the boot loader 
loaded the kernel into physical memory). This way, although the kernel's virtual address is high enough to leave plenty 
of address space for user processes, it will be loaded in physical memory at the 1MB point in the PC's RAM, just 
above the BIOS ROM. This approach requires that the PC have at least a few megabytes of physical memory (so that 
physical address 0x00100000 works), but this is likely to be true of any PC built after about 1990. 

In fact, in the next lab, we will map the entire bottom 256MB of the PC's physical address space, from physical 
addresses 0x00000000 through 0x0fffffff, to virtual addresses 0xf0000000 through 0xffffffff respectively. You should 
now see why JOS can only use the first 256MB of physical memory. 

For now, we'll just map the first 4MB of physical memory, which will be enough to get us up and running. We do this 
using the hand-written, statically-initialized page directory and page table in kern/entrypgdir.c. For now, you don't 
have to understand the details of how this works, just the effect that it accomplishes. Up until kern/entry.S sets the 
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CR0_PG flag, memory references are treated as physical addresses (strictly speaking, they're linear addresses, but 
boot/boot.S set up an identity mapping from linear addresses to physical addresses and we're never going to change 
that). Once CR0_PG is set, memory references are virtual addresses that get translated by the virtual memory hardware 
to physical addresses. entry_pgdir translates virtual addresses in the range 0xf0000000 through 0xf0400000 to 
physical addresses 0x00000000 through 0x00400000, as well as virtual addresses 0x00000000 through 0x00400000 to 
physical addresses 0x00000000 through 0x00400000. Any virtual address that is not in one of these two ranges will 
cause a hardware exception which, since we haven't set up interrupt handling yet, will cause QEMU to dump the 
machine state and exit (or endlessly reboot if you aren't using the 6.828-patched version of QEMU). 

Exercise 7. Use QEMU and GDB to trace into the JOS kernel and stop at the movl %eax, %cr0. Examine memory at 
0x00100000 and at 0xf0100000. Now, single step over that instruction using the stepi GDB command. Again, 
examine memory at 0x00100000 and at 0xf0100000. Make sure you understand what just happened. 

What is the first instruction after the new mapping is established that would fail to work properly if the mapping
 
weren't in place? Comment out the movl %eax, %cr0 in kern/entry.S, trace into it, and see if you were right.
 

Formatted Printing to the Console 

Most people take functions like printf() for granted, sometimes even thinking of them as "primitives" of the C
 
language. But in an OS kernel, we have to implement all I/O ourselves.
 

Read through kern/printf.c, lib/printfmt.c, and kern/console.c, and make sure you understand their
 
relationship. It will become clear in later labs why printfmt.c is located in the separate lib directory.
 

Exercise 8. We have omitted a small fragment of code - the code necessary to print octal numbers using patterns of the 
form "%o". Find and fill in this code fragment. 

Be able to answer the following questions: 

1. Explain the interface between printf.c and console.c. Specifically, what function does console.c export? 
How is this function used by printf.c? 

2. Explain the following from console.c: 

1      if (crt_pos >= CRT_SIZE) {
 
2              int  i;
 
3              memcpy(crt_buf,  crt_buf + CRT_COLS, (CRT_SIZE - CRT_COLS) *

sizeof(uint16_t));

4              for  (i = CRT_SIZE - CRT_COLS; i < CRT_SIZE; i++)
 
5                      crt_buf[i]  = 0x0700 | ' ';
 
6              crt_pos  -= CRT_COLS;
 
7 }
 

3. For the following questions you might wish to consult the notes for Lecture 2. These notes cover GCC's calling 
convention on the x86. 

Trace the execution of the following code step-by-step: 

int x = 1, y = 3, z = 4;

cprintf("x %d, y %x, z %d\n", x, y, z);
 

In the call to cprintf(), to what does fmt point? To what does ap point? 
List (in order of execution) each call to cons_putc, va_arg, and vcprintf. For cons_putc, list its 
argument as well. For va_arg, list what ap points to before and after the call. For vcprintf list the values 
of its two arguments. 

4. Run the following code.

    unsigned int i = 0x00646c72;
    cprintf("H%x Wo%s", 57616, &i); 

What is the output? Explain how this output is arrived at in the step-by-step manner of the previous exercise. 
10
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Here's an ASCII table that maps bytes to characters. 

The output depends on that fact that the x86 is little-endian. If the x86 were instead big-endian what would you 
set i to in order to yield the same output? Would you need to change 57616 to a different value? 

Here's a description of little- and big-endian and a more whimsical description. 

5. In the following code, what is going to be printed after 'y='? (note: the answer is not a specific value.) Why 
does this happen?

    cprintf("x=%d y=%d", 3); 

6. Let's say that GCC changed its calling convention so that it pushed arguments on the stack in declaration order, 
so that the last argument is pushed last. How would you have to change cprintf or its interface so that it would 
still be possible to pass it a variable number of arguments? 

Challenge: Enhance the console to allow text to be printed in different colors. The traditional way to do this is to make 
it interpret ANSI escape sequences embedded in the text strings printed to the console, but you may use any 
mechanism you like. There is plenty of information on the 6.828 reference page and elsewhere on the web on 
programming the VGA display hardware. If you're feeling really adventurous, you could try switching the VGA 
hardware into a graphics mode and making the console draw text onto the graphical frame buffer. 

The Stack 

In the final exercise of this lab, we will explore in more detail the way the C language uses the stack on the x86, and in 
the process write a useful new kernel monitor function that prints a backtrace of the stack: a list of the saved 
Instruction Pointer (IP) values from the nested call instructions that led to the current point of execution. 

Exercise 9. Determine where the kernel initializes its stack, and exactly where in memory its stack is located. How 
does the kernel reserve space for its stack? And at which "end" of this reserved area is the stack pointer initialized to 
point to? 

The x86 stack pointer (esp register) points to the lowest location on the stack that is currently in use. Everything below 
that location in the region reserved for the stack is free. Pushing a value onto the stack involves decreasing the stack 
pointer and then writing the value to the place the stack pointer points to. Popping a value from the stack involves 
reading the value the stack pointer points to and then increasing the stack pointer. In 32-bit mode, the stack can only 
hold 32-bit values, and esp is always divisible by four. Various x86 instructions, such as call, are "hard-wired" to use 
the stack pointer register. 

The ebp (base pointer) register, in contrast, is associated with the stack primarily by software convention. On entry to a 
C function, the function's prologue code normally saves the previous function's base pointer by pushing it onto the 
stack, and then copies the current esp value into ebp for the duration of the function. If all the functions in a program 
obey this convention, then at any given point during the program's execution, it is possible to trace back through the 
stack by following the chain of saved ebp pointers and determining exactly what nested sequence of function calls 
caused this particular point in the program to be reached. This capability can be particularly useful, for example, when 
a particular function causes an assert failure or panic because bad arguments were passed to it, but you aren't sure 
who passed the bad arguments. A stack backtrace lets you find the offending function. 

Exercise 10. To become familiar with the C calling conventions on the x86, find the address of the test_backtrace 
function in obj/kern/kernel.asm, set a breakpoint there, and examine what happens each time it gets called after the 
kernel starts. How many 32-bit words does each recursive nesting level of test_backtrace push on the stack, and 
what are those words? 

Note that, for this exercise to work properly, you should be using the patched version of QEMU available on the tools 
page. Otherwise, you'll have to manually translate all breakpoint and memory addresses to linear addresses. 
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The above exercise should give you the information you need to implement a stack backtrace function, which you 
should call mon_backtrace(). A prototype for this function is already waiting for you in kern/monitor.c. You can do 
it entirely in C, but you may find the read_ebp() function in inc/x86.h useful. You'll also have to hook this new 
function into the kernel monitor's command list so that it can be invoked interactively by the user. 

The backtrace function should display a listing of function call frames in the following format: 

Stack backtrace:
  ebp f0109e58  eip f0100a62  args 00000001 f0109e80 f0109e98 f0100ed2 00000031
  ebp f0109ed8  eip f01000d6  args 00000000 00000000 f0100058 f0109f28 00000061

... 

The first line printed reflects the currently executing function, namely mon_backtrace itself, the second line reflects 
the function that called mon_backtrace, the third line reflects the function that called that one, and so on. You should 
print all the outstanding stack frames. By studying kern/entry.S you'll find that there is an easy way to tell when to 
stop. 

Within each line, the ebp value indicates the base pointer into the stack used by that function: i.e., the position of the 
stack pointer just after the function was entered and the function prologue code set up the base pointer. The listed eip
value is the function's return instruction pointer: the instruction address to which control will return when the function 
returns. The return instruction pointer typically points to the instruction after the call instruction (why?). Finally, the 
five hex values listed after args are the first five arguments to the function in question, which would have been pushed 
on the stack just before the function was called. If the function was called with fewer than five arguments, of course, 
then not all five of these values will be useful. (Why can't the backtrace code detect how many arguments there 
actually are? How could this limitation be fixed?) 

Here are a few specific points you read about in K&R Chapter 5 that are worth remembering for the following exercise 
and for future labs. 

If int *p = (int*)100, then (int)p + 1 and (int)(p + 1) are different numbers: the first is 101 but the 
second is 104. When adding an integer to a pointer, as in the second case, the integer is implicitly multiplied by 
the size of the object the pointer points to. 
p[i] is defined to be the same as *(p+i), referring to the i'th object in the memory pointed to by p. The above 
rule for addition helps this definition work when the objects are larger than one byte. 
&p[i] is the same as (p+i), yielding the address of the i'th object in the memory pointed to by p. 

Although most C programs never need to cast between pointers and integers, operating systems frequently do. 
Whenever you see an addition involving a memory address, ask yourself whether it is an integer addition or pointer 
addition and make sure the value being added is appropriately multiplied or not. 

Exercise 11. Implement the backtrace function as specified above. Use the same format as in the example, since 
otherwise the grading script will be confused. When you think you have it working right, run make grade  to see if its 
output conforms to what our grading script expects, and fix it if it doesn't. After you have handed in your Lab 1 code, 
you are welcome to change the output format of the backtrace function any way you like. 

At this point, your backtrace function should give you the addresses of the function callers on the stack that lead to 
mon_backtrace() being executed. However, in practice you often want to know the function names corresponding to 
those addresses. For instance, you may want to know which functions could contain a bug that's causing your kernel to 
crash. 

To help you implement this functionality, we have provided the function debuginfo_eip(), which looks up eip in the 
symbol table and returns the debugging information for that address. This function is defined in kern/kdebug.c. 

Exercise 12. Modify your stack backtrace function to display, for each eip, the function name, source file name, and 
line number corresponding to that eip. 
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In debuginfo_eip, where do __STAB_* come from? This question has a long answer; to help you to discover the
 
answer, here are some things you might want to do:
 

look in the file kern/kernel.ld for __STAB_* 
run i386-jos-elf-objdump -h obj/kern/kernel 
run i386-jos-elf-objdump -G obj/kern/kernel 
run i386-jos-elf-gcc -pipe -nostdinc -O2 -fno-builtin -I. -MD -Wall -Wno-format -DJOS_KERNEL
-gstabs -c -S kern/init.c, and look at init.s. 
see if the bootloader loads the symbol table in memory as part of loading the kernel binary 

Complete the implementation of debuginfo_eip by inserting the call to stab_binsearch to find the line number for 
an address. 

Add a backtrace command to the kernel monitor, and extend your implementation of mon_backtrace to call
 
debuginfo_eip and print a line for each stack frame of the form:
 

K> backtrace
 
Stack backtrace:

  ebp f010ff78  eip f01008ae  args 00000001 f010ff8c 00000000 f0110580 00000000

         kern/monitor.c:143:  monitor+106

  ebp f010ffd8  eip f0100193  args 00000000 00001aac 00000660 00000000 00000000

         kern/init.c:49:  i386_init+59

  ebp f010fff8  eip f010003d  args 00000000 00000000 0000ffff 10cf9a00 0000ffff

         kern/entry.S:70: <unknown>+0
 
K>
 

Each line gives the file name and line within that file of the stack frame's eip, followed by the name of the function 
and the offset of the eip from the first instruction of the function (e.g., monitor+106 means the return eip is 106 bytes 
past the beginning of monitor). 

Be sure to print the file and function names on a separate line, to avoid confusing the grading script. 

Tip: printf format strings provide an easy, albeit obscure, way to print non-null-terminated strings like those in STABS 
tables. printf("%.*s", length, string) prints at most length characters of string. Take a look at the printf man 
page to find out why this works. 

You may find that some functions are missing from the backtrace. For example, you will probably see a call to 
monitor() but not to runcmd(). This is because the compiler in-lines some function calls. Other optimizations may 
cause you to see unexpected line numbers. If you get rid of the -O2 from GNUMakefile, the backtraces may make more 
sense (but your kernel will run more slowly). 

This completes the lab. 
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