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Today’s candidate for the Hall of Fame or Shame is adaptive menus, a feature of Microsoft Office 

2003. Initially, a menu shows only the most commonly used commands.  Clicking on the arrow at 

the bottom of the menu expands it to show all available commands. Adaptive menus track how often 

a user invokes each command, in order to display frequently-used commands and recently-used 

commands. 

Let’s discuss the usability of this idea. 

This interface is striving for a compromise between simplicity (i.e., providing as few features as 

possible) and task analysis (supporting the tasks required by many users, and trying to adapt to the 

common tasks of each individual user). Both properties are important for usability.  Unfortunately 

they also compete with each other. Adaptive menus are an interesting hybrid technique that’s trying 

to satisfy both. 

The downside is lack of predictability.  Because the menu may change in complex and unpredictable 

ways – with new items appearing and underused items disappearing for no visible reason – the user 

can no longer rely on a lot of useful cues to find menu items. One of these cues that’s lost is spatial 

memory – Paste may be found at different distances down the menu each time the menu appears.  

Another missing cue is context: Paste’s neighbors may change as well. 

Another downside is lack of user control. The adaptation happens automatically; the user can’t 

manually fixate or remove items from a menu. 

This particular implementation of adaptive menus has some specific usability problems. When the 

full menu appears, the new items are inserted into place, and there’s very little contrast in the 

graphic design to distinguish between the old items and the new items. So the user has to search 

through the entire menu again. 

But this particular implementation addresses other usability problems very well. When the user is 

hunting through all the menus, looking for a command, the full menu only has to be requested once; 

then all subsequent menus are fully displayed. 
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Here’s an alternative approach to providing easy access to high-frequency menu choices: a split  

menu. You can see it in Microsoft Office’s font drop-down menu. A small number of fonts that  

you’ve used recently appear in the upper part of the menu, while the entire list of fonts is available in  

the lower part of the menu. The upper list is sorted by recency, while the lower part is sorted  

alphabetically.  

Let’s discuss the split menu approach too.  

These menu approaches are particularly relevant to today’s lecture because they’ve been tested by a  

couple of excellent controlled experiments. The split menu idea was evaluated by Sears &  

Shneiderman, “Split menus: effectively using selection frequency to organize menus”, ACM TOCHI,  
March 1994. And the adaptive menu was tested by Findlater & McGrenere, “A comparison of static,  

adaptive, and adaptable menus”, CHI 2004.  

Sears & Shneiderman: compared alphabetic, frequency-ordered, and split menus (with up to 4 high- 

frequency items at top of menu, ordered in same way as rest of menu, removed from the rest of  

menu – so not the same as Office’s font split menu).  15-item menus (randomly selected from a  

dictionary of 1000 common words). Three different frequency distributions across the alphabetic  

menu (end of menu, middle of menu, top of menu). 36 subjects, within-subjects, each saw 3x3  

menus (random unique items) counterbalanced. Pulldown menus, timed from mouse press on menu  

bar until selection of item. 100 trials per menu, chosen from frequency distribution of menu.  

Measured time and ranked preference of menu type (1-3). Subjective ranking had split (1.4) >  

alphabetic (2.0) > frequency (2.6). Selection time for frequent items at end of menu had split (1.4s)  

> freq (1.5s) > alphabetic (1.7s); for frequent items at start of menu had split, alphabetic (1.4s) > freq  

(1.5s). Also proposed and fitted a cognitive model that high-frequency menu items take time  

logarithmic in item position (a la Fitts’s Law) while low-frequency items take linear time in position  

(visual scan).  

Findlater & McGrenere: compared split menus that were static (unchanging), adaptive (changed by  

system), and adaptable (changed by user). Adaptive menu has two most recent and two most  

frequent items in the split part. Adaptable had arrow buttons next to each item to promote or demote  

it. Used frequency distributions from three most frequently-used Word menus (File, Format, Insert),  

collected from one user over 20 weeks, but changed all item names to mask them. Measured time  

and ranked preference (on several dimensions: overall, efficiency, ease, error, frustration, etc.).  27  

subjects, within-subjects 3x3. Selection time had static (1.5), adaptable (1.6) >> adaptive (1.65).  

Overall preference had adaptable >> adaptive >> static.  3 



This is the first lecture in the thread about research methods in human-computer interaction. We’ll 

talk at a high level about the three major kinds of empirical research in HCI, but our primary interest 

will be in testing the usability of a user interface by rigorous, controlled, laboratory experiment. 

This lecture covers some of the issues involved in designing such a controlled experiment. The 

issues are general to all scientific experiments, but we’ll look specifically at how they apply to user 

interface testing. 

In our next lecture, we’ll talk about how to analyze the results of an experiment. 

Much of the material for this lecture comes from Joseph McGrath, “Methodology matters: Doing 

research in the behavioural and social sciences”, published in R. Baecker, J. Grudin, W. Buxton and 

S. Greenberg (eds), Readings in Human Computer Interaction: Towards the Year 2000 (Morgan-

Kaufmann, 1996) 
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We’ll start by talking about the main kinds of research methods in human-computer interaction.  

Here we mean empirical methods, techniques for investigating the world and collecting evidence to 

prove or disprove our hypotheses about how people interact with computers, and about the usability 

of interfaces. These methods are widely used across other kinds of research involving people, 

including psychology, cognitive science, sociology, and economics.  When we talk about an HCI 

research paper and look for the evaluation of the paper’s claim, we will often find one of these 

methods. Note that these are not the only acceptable kinds of evaluation in human-computer 

interaction. In particular, this picture (and this lecture) largely ignore evaluation methods that are 

relevant to the computer side of the human-computer interface: issues like performance, reliability, 

security; proof that a system or toolkit is broadly applicable; etc. 

A lab experiment is an artificial situation, created by and highly controlled by the experimenter, that 

typically compares alternative user interfaces or measures how usability varies with some design 

parameter.  One example might be a test of font readability, done by bringing subjects into the 

experimenter’s lab, asking them to read texts displayed with different fonts, and timing their reading 

speed. 

A field study is a real situation, happening in the actual environment where people use the interface 

under consideration, and using real tasks (rather than tasks concocted by the experimenter). Social 

scientists make distinctions between pure field studies (where the researcher acts like an 

anthropologist or ethnographer, intervenes as little as possible, hiding in the bushes, so to speak) and 

field experiments (where the researcher introduces something new, like a new system, new process, 

or new UI). In HCI, which is still a young field and still striving to make something new, these 

distinctions end up being a matter of when the study happens to be done in the evolution of your 

project. Initial field studies just observe without intervening (contextual inquiry, which we discussed 

in the task analysis lecture, is a technique like this). Final field studies deliver the new UI and see 

how it’s used. 

A survey is a questionnaire, conducted by paper, phone, web, or in person. 
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The picture shows how these methods compare on several interesting dimensions. In the vertical 

dimension, lab experiments often use highly abstract tasks, which are simplified and highly 

controlled in order to make strong statistical claims, but also farther removed from the real-world. 

An example is the classic Fitts’s Law experiment, which measures the time it takes to hit targets on 

the screen by using plain rectangles rather than realistic pointing targets like buttons, menus, and 

hyperlinks. Field studies and surveys, by contrast, can use more concrete, real-world examples. 

In the horizontal direction, lab experiments and surveys are obtrusive: people need to be interrupted 

and forced to give their attention to the study.  Because they’re aware they’re being studied, their 

behavior can change; we’ll mention some of the ways that can happen later in this lecture. Field 

studies, on the other hand, can be far less obtrusive, since the subjects are doing their own tasks in 

their own environment, and so the likelihood of obtaining natural behavior is much higher. 

Finally, the picture also shows how the three methods compare on three criteria which are all 

desirable but virtually impossible to obtain at once from a single method. Realism means whether 

the phenomena captured are actually what happens in the real world (in real contexts on real tasks); 

field studies are strongest on that. Generalizability concerns whether the results apply to the whole 

population of people relevant to the study; a survey is strongest on that, because it’s far cheaper to 

survey a large number of people, and good statistical sampling techniques exist to make the results 

generalizable. Precision means control over measurement error and extraneous factors that might 

introduce noise into the results; lab experiments are strongest on that, because they can tightly 

control the tasks and environment to eliminate as much error as possible. 

(This picture actually omits one important class of methods, which is occasionally but not widely 

used in HCI research: a theoretical model or computer simulation of human behavior.  We talked 

about some theoretical models for HCI, like KLM and GOMS, in the efficiency lecture.) 
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In this lecture, we’ll be focusing on controlled experiments – particularly those that try to measure 

the usability of alternative user interface designs. Recall our definition of usability, and how we 

broke it down into several dimensions. We can quantify all these measures of usability, which will 

be essential to doing an experiment. Just as we can say algorithm X is faster than algorithm Y on 

some workload, we can say that interface X is more learnable, or more efficient, or less error-prone 

than interface Y for some set of tasks and some class of users, by designing an experiment that 

measures the two interfaces. 

9 



Here’s a high-level overview of a controlled experiment.  You start by stating a clear, testable 

hypothesis. By testable, we mean that the hypothesis must be quantifiable and measurable. Here’s an 

example of a hypothesis that we might want to test: that the Macintosh menu bar, which is anchored 

to the top of the screen, is faster to access than the Windows menu bar, which is separated from the 

top of the screen by a window title bar. 

You then choose your independent variables – the variables you’re going to manipulate in order to 

test the hypothesis. In our example, the independent variable is the kind of interface: Mac menubar 

or Windows menubar.  In fact, we can make it very specific: the independent variable is the y-

position of the menubar (either y = 0 or y = 16, or whatever the height of the title bar is). Other 

independent variables may also be useful. For example, you may want to test your hypothesis on 

different user classes (novices and experts, or Windows users and Mac users).  You may also want to 

test it on certain kinds of tasks. For example, in one kind of task, the menus might have an 

alphabetized list of names; in another, they might have functionally-grouped commands. 

You also have to choose the dependent variables, the variables you’ll actually measure in the 

experiment to test the hypothesis. Typical dependent variables in user testing are time, error rate, 

event count (for events other than errors – e.g., how many times the user used a particular 

command), and subjective satisfaction (usually measured by numerical ratings on a questionnaire). 

Finally, you use statistical techniques to analyze how your changes in the independent variables 

affected the dependent variables, and whether those effects are significant (indicating a genuine 

cause-and-effect) or not (merely the result of chance or noise). We’ll say more about statistical tests 

in the next lecture. 
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Here’s a block diagram to help you visualize what we’re trying to do with experiment design.  Think 

of the process you’re trying to understand (e.g., menu selection) as a black box, with lots of inputs 

and a few outputs. A controlled experiment twiddles some of the input knobs on this box (the 

independent variables) and observes some of the outputs (the dependent variables) to see how they 

are affected. 

The problem is that there are many other input knobs as well (unknown/uncontrolled variables), that 

may affect the process we’re observing in unpredictable ways.  The purpose of experiment design is 

to eliminate the effect of these unknown variables, or at least render harmless, so that we can draw 

conclusions about how the independent variables affect the dependent variables. 

What are some of these unknown variables? Consider the menubar experiment. Many factors might 

affect how fast the user can reach the menubar: the pointing device they’re using (mouse, trackball, 

isometric joystick, touchpad); where the mouse pointer started; the surface they’re moving the mouse 

on; the user’s level of fatigue; their past experience with one kind of menubar or the other.  All of 

these are unknown variables that might affect the dependent variable (speed of access). 
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Here are some of the issues we’d have to consider in designing the menubar experiment. 

First, what user population do we want to sample? Does experience matter? Windows users will be more experienced with 

one kind of menu bar, and Mac users with the other.  On the other hand, the model underlying our hypothesis (Fitts’s Law 

for pointing tasks) is largely independent of long-term memory or practice, so we might expect that experience doesn’t 
matter.  But that’s another hypothesis we should test, so maybe past experience should be an independent variable that we 

select when sampling. 

How do we sample the user population we want? The most common technique (in academia) is advertising around a 

college campus, but this biases against older users and less-educated users. Any sampling method has biases; you have to 

collect demographic information, report it, and consider whether the bias influences the generalizability of your results. 

What implementation should we test? One possibility is to test the menu bars in their real context: inside the Mac 
interface, and inside the Windows interface, using real applications and real tasks.  This is more realistic, but the problem is 

now the presence of confounding variables -- the size of the menu bars might be different, the reading speed of the font, the 

mouse acceleration parameters, etc. We need to control for as many of these variables as we can.  Another possibility is 

implementing our own window manager that holds these variables constant and merely changes the position of the menu 

bar. 

What tasks should we give the user? Again, having the user use the menu bar in the context of realistic tasks might provide 

more generalizable results; but it would also be noisier.  An artificial experiment that simply displays a menu bar and cues 
the user to hit various targets on it would provide more reliable results.  But then the user’s mouse would always be in the 

menu bar, which isn’t at all realistic.  We’d need to force the user to move the mouse out of the menu bar between trials, 

perhaps to some home location in the middle of the screen. 

How do we measure the dependent variable, time? Maybe from the time the user is given the cue (“click Edit”) to the time 

the user successfully clicks on Edit. 

What order should we present the tasks and the interface conditions? Using the same order all the time can cause both 

learning effects (e.g., you do better on the interface conditions because you got practice with the tasks and the study 
protocol during the first interface condition) and fatigue effects (where you do worse on later interface conditions because 

you’re getting tired). 

Finally, the hardware we use for the study can introduce lots of confounding variables.  We should use the same computer 

for the entire experiment – across both users and interface conditions. 
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Unknown variation is the bugaboo in experiment design, and here are the three main problems it can 

cause. 

Internal validity refers to whether the effect we see on the experiment outputs was actually caused 

by the changes we made to the inputs, or caused by some unknown variable that we didn’t control or 

measure. For example, suppose we designed the menubar experiment so that the Mac menubar 

position was tested on an actual Mac, and the Windows menubar position was tested on a Windows 

box. This experiment wouldn’t be internally valid, because we can’t be sure whether differences in 

performance were due to the difference in the position of the menubar, or to some other (unknown) 

difference in two machines -- like font size, mouse acceleration, mouse feel, even the system timer 

used to measure the performance! Statisticians call this effect confounding; when a variable that we 

didn’t control has a systematic effect on the dependent variables, it’s a confounding variable. 

One way to address internal validity is to hold variables constant, as much as we can: for example, 

conducting all user tests in the same room, with the same lighting, the same computer, the same 

mouse and keyboard, the same tasks, the same training. The cost of this approach is external 

validity, which refers to whether the effect we see can be generalized to the world outside the lab, 

i.e. when those variables are not controlled. But when we try to control all the factors that might 

affect menu access speed – a fixed starting mouse position, a fixed menubar with fixed choices, fixed 

hardware, and a single user – then it would be hard to argue that our lab experiment generalizes to 

how menus are used in the varying conditions encountered in the real world. 

Finally, reliability refers to whether the effect we see (the relationship between independent and 

dependent variables) is repeatable. If we ran the experiment again, would we see the same effect?  If 

our experiment involved only one trial -- clicking the menubar just once – then even if we held 

constant every variable we could think of, unknown variations will still cause error in the 

experiment. A single data sample is rarely a reliable experiment. 
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Here’s a simple example to illustrate internal validity, external validity, and reliability. 

Suppose we have two boxes labeled A and B, and each box has some marbles inside. We want to test the 
hypothesis that these two boxes have different numbers of marbles.  (For example, maybe each box is from a 
different manufacturer, but both boxes are the same price, and we want to claim that one box is a better deal 
than the other.)  In this case, the independent variable is the identity of the box (the brand of the 
manufacturer), and the dependent variable we’re trying to measure is the number of marbles inside the box. 

This hypothesis is testable because we can do measurements on the boxes to test it. One measurement we 

might do is open the boxes and count the marbles inside each one. If we counted 3 marbles in one box, and 5 
marbles in the other box, then we’d have strong evidence that A has fewer marbles than B.  But if we counted 
99 marbles in A and 101 marbles in B, would we be just as confident?  No, because we know that our counting 
may have errors -- we may skip marbles, or we may double-count marbles. If we counted A again, we might 
come up with 102 marbles. The reliability of a single measurement isn’t good enough. We can fix this 
reliability problem by better experiment design: counting each box several times, and computing a statistic (a 
summary of the measurements) instead of using a single measurement. The statistic is often the mean of the 
measurements, but others are possible. 

Counting is pretty slow, though, so to make our experiment cheaper to run, suppose we weigh the boxes 

instead. If box A is lighter than box B, then we’ll say that it has fewer marbles in it.  It’s easy to see the 
possible flaws in this experiment design: what if each marble in box A is lighter than each marble in box B?  
Then the whole box A might be lighter than B even if it has more marbles.  If this is true, then it threatens the 
experiment’s internal validity: the dependent variable we’ve chosen to measure (total weight) is a function not 
only of the number of marbles in the box, but also of the weight of each marble, and the weight of the marble 
also varies by the independent variable (the identity of the box). 

Suppose the weight of marbles is regulated by an international standard, so we can argue that A marbles should 

weigh the same as B marbles. But what if box A is made out of metal, and box B is made out of cardboard?  
This would also threaten internal validity – the weight of the box itself is a confounding variable. But now we 
can imagine a way to control for this variable, by pouring the marbles out of their original boxes into box C, a 
box that we’ve chosen, and weighing both sets of marbles separately in box C. We’ve changed our experiment 
design so that the weight of the box itself is held constant, so that it won’t contribute to the measured 
difference between box A and box B. 

But we’ve only done this experiment with the box A and box B we have in front of us.  What confidence do we 
have in concluding that all boxes from manufacturer A have a different number of marbles than those from 
manufacturer B – that if we went to the store and picked up new boxes of marbles, we’d see the same 
difference?  That’s the question of external validity. 
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Let’s look closer at typical dangers to internal validity in user interface experiments, and some solutions to them.  You’ll 

notice that the solutions tend to come in two flavors: randomization (which prevents unknown variables from having 

systematic effects on the dependent variables) and control (which tries to hold unknown variables constant). 

Ordering effects refer to the order in which different levels of the independent variables are applied.  For example, does 

the user work with interface X first, and then interface Y, or vice versa?  There are two effects from ordering: first, people 

learn. They may learn something from using interface X that helps them do better (or worse) with interface Y.  Second, 

people get tired or bored. After doing many tasks with interface X, they may not perform as well on interface Y. Clearly, 

holding the order constant threatens internal validity, because the ordering may be responsible for the differences in 

performance, rather than inherent qualities of the interfaces. One good solution to this threat is randomization: present the 
interfaces, or tasks, or other independent variables in a random order to each user.  Another good solution is 

counterbalancing (see a later slide). 

Selection effects arise when you use pre-existing groups as a basis for assigning different levels of an independent variable. 

Giving the Mac menubar to artists and the Windows menubar to engineers would be an obvious selection effect.  More 

subtle selection effects can arise, however.  Suppose you let the users line up, and then assigned the Mac menubar to the 

first half of the line, and Windows menubar to the second half.  This procedure seems “random”, but it isn’t – the users may 
line up with their friends, and groups of friends tend to have similar activities and interests. The same thing can happens 

even if people are responding “randomly” to your study advertisement – you don’t know how “random” that really is!  The 

only safe way to eliminate selection effects is honest randomization. 

A third important threat to internal validity is experimenter bias. After all, you have a hypothesis, and you’re hoping it 

works out – you’re rooting for interface X. This bias is an unknown variable that may affect the outcome, since you’re 

personally interacting with the user whose performance you’re measuring. One way to address experimenter bias is 

controlling the protocol of the experiment, so that it doesn’t vary between the interface conditions. Provide equivalent 
training for both interfaces, and give it on paper, not live. 

An even better technique for eliminating experimenter bias is the double-blind experiment, in which neither the subject 

nor the experimenter knows which condition is currently being tested. Double-blind experiments are the standard for 

clinical drug trials, for example; neither the patient nor the doctor knows whether the pill contains the actual experimental 

drug, or just a placebo. With user interfaces, double-blind tests may be impossible, since the interface condition is often 

obvious on its face. (Not always, though! The behavior of cascading submenus isn’t obviously visible, for example.) 

Experimenter-blind tests are essential if measurement of the dependent variables requires some subjective judgement. 

Suppose you’re developing an interface that’s supposed to help people compose good memos. To measure the quality of 

the resulting memos, you might ask some people to evaluate the memos created with the interface, along with memos 

created with a regular word processor.  But the memos should be presented in random order, and you should hide the 

interface that created each memo from the judge, to avoid bias. 
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Here are some threats to external validity that often come up in user studies. If you’ve done a 

thorough user analysis and task analysis, in which you actually went out and observed the real world, 

then it’s easier to judge whether your experiment is externally valid. 

Population asks whether the users you sampled are representative of the target user population.  Do 

your results apply to the entire user population, or only to the subgroup you sampled? The best way 

to ensure population validity is to draw a random sample from your real target user population.  But 

you can’t really, because users must choose, of their own free will, whether or not to participate in a 

study.  So there’s a self-selection effect already in action.  The kinds of people who participate in 

user studies may have special properties (extroversion? curiosity? sense of adventure? poverty?) that 

threaten external validity.  But that’s an inevitable effect of the ethics of user testing.  The best you 

can do is argue that on important, measurable variables – demographics, skill level, experience – 

your sample resembles the overall target user population. 

Ecological validity asks whether conditions in the lab are like the real world. An office environment 

would not be an ecologically valid environment for studying an interface designed for the dashboard 

of a car, for example. 

Training validity asks whether the interfaces tested are presented to users in a way that’s realistic to 

how they would encounter them in the real world. A test of an ATM machine that briefed each user 

with a 5-minute tutorial video wouldn’t be externally valid, because no ATM user in the real world 

would watch such a video. For a test of an avionics system in an airplane cockpit, on the other hand, 

even hours of tutorial may be externally valid, since pilots are highly trained. 

Similarly, task validity refers to whether the tasks you chose are realistic and representative of the 

tasks that users actually face in the real world. If you did a good task analysis, it’s not hard to argue 

for task validity. 
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Once we’ve addressed internal validity problems by either controlling or randomizing the unknowns, and 

external validity by sampling and experiment protocol design, reliability is what’s left. 

Here’s a good way to visualize reliability: imagine a bullseye target.  The center of the bullseye is the true 

effect that the independent variables have on the dependent variables.  Using the independent variables, you try 

to aim at the center of the target, but the uncontrolled variables are spoiling your aim, creating a spread pattern. 

If you can reduce the amount of uncontrolled variation, you’ll get a tighter shot group, and more reliable 

results. 

One kind of uncontrolled variation is a user’s previous experience.  Users enter your lab with a whole lifetime 

of history behind them, not just interacting with computers but interacting with the real world. You can limit 

this variation somewhat by screening users for certain kinds of experience, but take care not to threaten 

external validity when you artificially restrict your user sample. 

Even more variation comes from differences in ability – intelligence, visual acuity, memory, motor skills.  The 

best users may be 10 times better than the worst, an enormous variation that may swamp a tiny effect you’re 

trying to detect. 

Other kinds of uncontrolled variation arise when you can’t directly measure the dependent variables.  For 

example, the tasks you chose to measure may have their own variation, such as the time to understand the task 

itself, and errors due to misunderstanding the task, which aren’t related to the difficulty of the interface and act 

only to reduce the reliability of the test. Time is itself a gross measurement which may include lots of activities 

unrelated to the user interface: coughing, sneezing, asking questions, responding to distractions. 

One way to improve reliability eliminates uncontrolled variation by holding variables constant: e.g., selecting 

users for certain experience, giving them all identical training, and carefully controlling how they interact with 

the interface so that you can measure the dependent variables precisely.  If you control too many unknowns, 

however, you have to think about whether you’ve made your experiment externally invalid, creating an 

artificial situation that no longer reflects the real world. 

The main way to make an experiment reliable is repetition. We run many users, and have each user do many 

trials, so that the mean of the samples will approach the bullseye we want to hit. As you may know from 

statistics, the more trials you do, the closer the sample mean is likely to be to the true value. (Assuming the 

experiment is internally valid of course! Otherwise, the mean will just get closer and closer to the wrong 
value.) Unfortunately, the standard deviation of the sample mean goes down slowly, proportionally to the 

square root of the number of samples N. So you have to quadruple the number of users, or trials, in order to 

double reliability. 
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Blocking is another good way to eliminate uncontrolled variation, and therefore increase reliability.  

The basic idea is to divide up your samples up into blocks that are more homogeneous than the 

whole set. In other words, even if there is lots of uncontrolled variation between blocks, the blocks 

should be chosen so that there is little variation within a block. Once you’ve blocked your data, you 

apply all the independent variable conditions within each block, and compare the dependent 

variables only within the block. 

Here’s a simple example of blocking.  Suppose you’re studying materials for the soles of childrens’ 

shoes, and you want to see if material A wears faster or slower than material B. There’s much 

uncontrolled variation between feet of different children – how they behave, where they live and 

walk and play – but the two feet of the same child both see very similar conditions by comparison. 

So we treat each child as a block, and apply one sole material to one foot, and the other sole material 

to the other foot. Then we measure the difference between the sole wear as our dependent variable.  

This technique prevents inter-child variation from swamping the effect we’re trying to see. 

In agriculture, blocking is done in space. A field is divided up into small plots, and all the treatments 

(pesticides, for example) are applied to plants in each plot. Even though different parts of the field 

may differ widely in soil quality, light, water, or air quality, plants in the same plot are likely to be 

living in very similar conditions. 

Blocking helps solve reliability problems, but it doesn’t address internal validity.  What if we always 

assigned material A to the left foot, and material B to the right foot?  Since most people are right-

handed and left-footed, some of the difference in sole wear may be caused by footedness, and not by 

the sole material. So you should still randomize assignments within the block. 
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The idea of blocking is what separates two commonly-used designs in user studies that compare two 

interfaces. Looking at these designs also gives us an opportunity to review some of the concepts 

we’ve discussed in this lecture. 

A between-subjects design is unblocked. Users are randomly divided into two groups. These 

groups aren’t blocks!  Why? First, because they aren’t more homogeneous than the whole set – they 

were chosen randomly, after all.  And second, because we’re going to apply only one independent 

variable condition within each group. One group uses only interface X, and the other group uses only 

interface Y. The performance of the X group is then compared with the performance of the Y group. 

This design eliminates variation due to interface ordering effects.  Since users only see one interface, 

they can’t transfer what they learned from one interface to the other, and they won’t be more tired on 

one interface than the other.  But it suffers from reliability problems, because the differences between 

the interfaces may be swamped by the innate differences between users.  As a result, you need more 

repetition – more users – to get reliable and significant results from a between subjects design. 

A within-subjects design is blocked by user.  Each user sees both interfaces, and the differential 

performance (performance on X – performance on Y) of all users is averaged and compared with 0.  

This design eliminates variation due to user differences, but may have reliability problems due to 

ordering effects. 

Which design is better? User differences cause much more variation than ordering effects, so the 

between-subjects design typically needs more users than the within-subjects design. But the 

between-subjects design may be more externally valid, because users in the real world will probably 

end up using only one interface (X or Y), not both. 
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Within-subjects designs suffer from ordering effects (particularly learning, which makes people get 

better, and fatigue, which makes them do worse).  Randomizing the order of tasks and experimental 

conditions is one way to deal with these effects. Another way, particularly when the number of users 

is small, is counterbalancing, which ensures that every experimental condition occurs the same 

number of times at each position in the order.  You counterbalance your experiment with the help of 

a Latin square, which is an NxN matrix with the property that a symbol occurs exactly once in each 

row and each column. A few Latin squares are shown here; it’s not hard to recognize the pattern and 

reproduce it for higher N. 

To use counterbalancing, you first determine N, the number of experimental conditions you have, 

which is done by taking the product of the different values of each independent variable you are 

using. For example, the Windows vs. Mac menubar experiment has one independent variable with 

two values, hence two experimental conditions. If we also decided to test how the speed of access 

varied with starting distance from the menu (say, 50 pixels, 500 pixels, and 1000 pixels), then we’d 

have 6 experimental conditions (2 menubars x 3 distances). Given the number of conditions N, we 

divide the users randomly into N equal groups (G1...GN), and present each group with the conditions 

in the order of a different column from the Latin square. 

Note that it’s important for the number of users to be a multiple of N, so that the groups are equal in 

size. Otherwise the conditions won’t occur the same number of times at each position in the order. 

The simple Latin squares shown here have a flaw – pairwise learning effects are not controlled.  In 

the 3x3 matrix, for example, B appears after A two-thirds of the time.  In the 4x4 matrix, B follows 

A three-quarters of the time.  So high performance on B may be due to practice on A, rather than 

inherent to B. This problem can be fixed by a balanced Latin square, left as an exercise for the 

reader.  (Or see I. Scott MacKenzie, “Research Note: Within-subjects vs. Between-subjects Designs: 

Which to Use?”, 2008, http://www.yorku.ca/mack/RN-Counterbalancing.html). 

20 

http://www.yorku.ca/mack/RN-Counterbalancing.html


One thing we’ve glossed over a bit is how to measure the dependent variables we’re interested in. 

Different measurement approaches have different kinds of noise, and some have biases induced by 

the user’s awareness that their behavior is being studied.  These biases are generally called reactivity 

effects by the social science community. Here’s a simple taxonomy from the McGrath paper 

(“Methodology Matters”, cited earlier), ranked by the obtrusiveness (and hence susceptibility to 

reactivity) of the method. 

Self-report means asking the user to provide the data. Examples might be “How many times a day 

do you check email?” or “How much did you like this interface?” Self-reports are applicable to 

many different questions, and very cheap to collect.  They are also noisy (particularly where 

quantitative data is requested), and may be biased by a variety of reactive effects, like politeness 

(trying to please the experimenter) and social desirability (saying what they think they should say, 

rather than the truth). Surveys generally exclusively use self-reported measures, though carefully-

designed surveys can eliminate some of the biases. Lab experiments must resort to self-reports for 

some variables, particularly satisfaction, but better alternatives can often be found. 

Observation means either the experimenter or an instrument (stopwatch, logging, screen capture, 

camera) is capturing the data. Observation is more expensive, but also more objective and 

controlled. A key distinction is whether the observation is visible (known to the subject) or hidden.  

Visible observation can produce distorting effects, like the classic “Hawthorne effect”, in which 

people perform better simply because they know they’re being studied. Hidden observation raises 

ethical questions of informed consent. Usually in lab experiments, the dilemma is resolved by using 

visible observation (or at least informed consent about observation), but using it on all conditions, 

and making it as unobtrusive as possible so that users stop thinking about it. 

The last two measures are not used in lab experiments, because they use data that was not created 

solely for the purpose of the experiment, so they cannot be controlled. Archival records are records 

of past behavior, not made expressly for the purpose of the current research.  Like observation, 

archival records can be distinguished by whether the user was aware that the records might be 

studied or read by another person (public) or not (private). Comments on a blog are public archival 

records; files on your hard drive are private. Finally, traces are laid down by behavior without the 

people involved even being aware that they are leaving something behind. The classic example of a 

trace is “read wear”, the dogears and damage to books that indicate where and how they’ve been 

used. Web server access logs probably also fall into this category, since the vast majority of users 

are probably unaware that their page visits are being recorded. 21 



Let’s conclude the lecture by returning to the main kinds of research methods in HCI (lab 

experiments, field studies, and surveys). We’re focusing on lab experiments in this course, because 

there’s much to say about them that isn’t covered by any other course in the EECS curriculum.  But 

frankly, each of these methods has advantages and disadvantages.  Lab experiments are abstract and 

obtrusive, and may not be representative of the real world. Field studies can’t be controlled, so it’s 

hard to make strong, precise claims about comparative usability.  Surveys are biased by reactivity. 

So a research program that depends entirely on only one of these methods as a source of data and 

validation is likely to be biased and incomplete. One way to deal with this problem is by 

triangulation – using multiple methods (usually at least three, so that they can vote) to tackle the 

same research question. If they all support your claim, then you have much stronger evidence, 

without as many biases. 

Triangulation is rarely seen in a single paper, but is not uncommon in a single researcher’s whole 

research program (the series of papers generated by their work), and is frankly essential for the HCI 

field as a whole. A diversity of research methods is necessary for producing reliable knowledge.  

There’s an active debate right now in the HCI community about this question, because of a sense that 

the flagship conference (CHI) has become dominated by papers using controlled lab experiments. 
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Here’s next lecture’s candidate for the UI Hall of Fame or Shame: Password Engine, an iPhone app 

(http://appshopper.com/utilities/password-engine). Its purpose is to generate passwords. 

What do you think about its simplicity? 

What about the Save and Revert buttons at the bottom? What in general are good usability 

approaches for saving changed data to a backend? 
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