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Additional reading for this lecture: The Perils of Prototyping by Alan Cooper, 1994. 
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http://ocw.mit.edu/fairuse
http://www.cooper.com/journal/1999/09/the_perils_of_prototyping.html
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Flash designers love to reimplement scrollbar widgets – and they do it wrong. Today we’ll pick on 

http://spotfire.tibco.com/Demo/. What parts of the scrollbar did they get right, and what parts did 

they get wrong? The problems are associated with learnability (i.e. consistency with other 

scrollbars), efficiency, and visibility. 
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Here’s another example of a Flash scrollbar that lacks clear affordances (from http://www.bcg.com/ 

join_bcg/interview_prep/interactive_case/default.aspx). It turns out that the bright, highly salient 

part of this scrollbar is NOT the thumb, but the track!  The thumb is a dark color – in fact, it’s the 

same dark color that’s used as a background color of some of the widgets on the right (Used and 

Remaining). (example suggested by Eryn Maynard) 
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http://www.bcg.com/join_bcg/interview_prep/interactive_case/default.aspx
http://www.bcg.com/join_bcg/interview_prep/interactive_case/default.aspx


Today we’re going to talk about protototyping: producing cheaper, less accurate renditions of your 

target interface. Prototyping is essential in the early iterations of a spiral design process, and it’s 

useful in later iterations too. 
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We build prototypes for several reasons, all of which largely boil down to cost.  

First, prototypes are much faster to build than finished implementations, so we can evaluate them  

sooner and get early feedback about the good and bad points of a design.  

Second, if we have a design decision that is hard to resolve, we can build multiple prototypes  

embodying the different alternatives of the decision.  

Third, if we discover problems in the design, a prototype can be changed more easily, for the same  

reasons it could be built faster.  Prototypes are more malleable. Most important, if the design flaws  

are serious, a prototype can be thrown away. It’s important not to commit strongly to design ideas  

in the early stages of design. Unfortunately, writing and debugging a lot of code creates a  

psychological sense of commitment which is hard to break. You don’t want to throw away  

something you’ve worked hard on, so you’re tempted to keep some of the code around, even if it  

really should be scrapped.  

The prototyping techniques we’ll see in this lecture actually force you to throw the prototype away.   

For example, a paper mockup won’t form any part of a finished software implementation.  This is a  

good mindset to have in early iterations, since it maximizes your creative freedom.  
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An essential property of a prototyping technique is its fidelity, which is simply how similar it is to 

the finished interface. Low-fidelity prototypes omit details, use cheaper materials, or use different 

interaction techniques. High-fidelity prototypes are very similar to the finished product. 
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Fidelity is not just one-dimensional, however.  Prototypes can be low- or high-fidelity in various  

different ways (Carolyn Snyder, Paper Prototyping, 2003).  

Breadth refers to the fraction of the feature set represented by the prototype. A prototype that is  

low-fidelity in breadth might be missing many features, having only enough to accomplish certain  

specific tasks. A word processor prototype might omit printing and spell-checking, for example.  

Depth refers to how deeply each feature is actually implemented. Is there a backend behind the  

prototype that’s actually implementing the feature?  Low-fidelity in depth may mean limited choices  

(e.g., you can’t print double-sided), canned responses (always prints the same text, not what you  

actually typed), or lack of robustness and error handling (crashes if the printer is offline).  

A diagrammatic way to visualize breadth and depth is shown (following Nielsen, Usability  
Engineering, p. 94). A horizontal prototype is all breadth, and little depth; it’s basically a frontend  

with no backend. A vertical prototype is the converse: one area of the interface is implemented  

deeply.  The question of whether to build a horizontal or vertical prototype depends on what risks  

you’re trying to mitigate. In user interface design, horizontal prototypes are more common, since  

they address usability risk. But if some aspect of the application is a risky implementation – you’re  

not sure if it can be implemented to meet the requirements – then you may want to build a vertical  

prototype to test that.  

A special case lies at the intersection of a horizontal and a vertical prototype.  A scenario shows how  

the frontend would look for a single concrete task.  
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Two more crucial dimensions of a prototype’s fidelity are, loosely, its look and its feel.  Look is the 

appearance of the prototype. A hand-sketched prototype is low-fidelity in look, compared to a 

prototype that uses the same widget set as the finished implementation. Feel refers to the physical 

methods by which the user interacts with the prototype. A user interacts with a paper mockup by 

pointing at things to represent mouse clicks, and writing on the paper to represent keyboard input. 

This is a low-fidelity feel for a desktop application (but it may not be far off for a tablet PC 

application). 
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Here’s the same dialog box in both low-fi and high-fi versions.  How do they differ in the kinds of 

things you can test and get feedback about? 
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Paper prototypes are an excellent choice for early design iterations. A paper prototype is a physical 

mockup of the interface, mostly made of paper.  It’s usually hand-sketched on mutiple pieces, with 

different pieces showing different menus, dialog boxes, or window elements.  

The key difference between mere sketches and a paper prototype is interactivity. A paper prototype 

is brought to life by a design team member who simulates what the computer would do in response 

to the user’s “clicks” and “keystrokes”, by rearranging pieces, writing custom responses, and 

occasionally announcing some effects verbally that are too hard to show on paper.  Because a paper 

prototype is actually interactive, you can actually user-test it: give users a task to do and watch how 

they do it. 

A paper prototype is clearly low fidelity in both look and feel.  But it can be arbitrarily high fidelity 

in breadth at very little cost (just sketching, which is part of design anyway). Best of all, paper 

prototypes can be high-fidelity in depth at little cost, since a human being is simulating the 

backend. 

Much of the material about paper prototyping in this lecture draws on the classic paper by Rettig et 

al, “Prototyping for tiny fingers” (CACM 1994), and Carolyn Snyder’s book Paper Prototyping: The 
Fast and Easy Way to Design and Refine User Interfaces (Morgan Kaufmann, 2003). 
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But why use paper? And why hand sketching rather than a clean drawing from a drawing program? 

Hand-sketching on paper is faster.  You can draw many sketches in the same time it would take to 

draw one user interface with code. For most people, hand-sketching is also faster than using a 

drawing program to create the sketch. 

Paper is easy to change. You can even change it during user testing.  If part of the prototype was a 

problem for one user, you can scratch it out or replace it before the next user arrives.  Surprisingly, 

paper is more malleable than digital bits in many ways. 

Hand-sketched prototypes in particular are valuable because they focus attention on the issues that 

matter in early design without distracting anybody with details. When you’re sketching by hand, you 

aren’t bothered with details like font, color, alignment, whitespace, etc.  In a drawing program, you 

would be faced with all these decisions, and you might spend a lot of time on them – time that would 

clearly be wasted if you have to throw away this design. Hand sketching also improves the feedback 

you get from users. They’re less likely to nitpick about details that aren’t relevant at this stage.  

They won’t complain about the color scheme if there isn’t one.  More important, however, a hand-

sketch design seems less finished, less set in stone, and more open to suggestions and improvements. 

Architects have known about this phenomenon for many years. If they show clean CAD drawings to 

their clients in the early design discussions, the clients are less able to discuss needs and 

requirements that may require radical changes in the design. In fact, many CAD tools have an 

option for rendering drawings with a “sketchy” look for precisely this reason. 

A final advantage of paper prototyping: no special skills are required.  So graphic designers, usability 

specialists, and even users can help create prototypes and operate them. 
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Here are the elements of a paper prototyping toolkit. 

Although standard (unlined) paper works fine, you’ll get better results from sturdier products like 
poster board and index cards. Use poster board to draw a static background, usually a window 
frame. Then use index cards for the pieces you’ll place on top of this background. You can cut the 
index cards down to size for menus and window internals. 

Restickable Post-it Note glue, which comes in a roll-on stick, is a must. This glue lets you make all 
of your pieces sticky, so they stay where you put them.  You can find this glue at Pearl Arts in 
Central Square; it’s not found in the Coop. 

Post-it correction tape is another essential element. It’s a roll of white tape with Post-it glue on one 
side. Correction tape is used for text fields, so that users can write on the prototype without 
changing it permanently.  You peel off a length of tape, stick it on your prototype, let the user write 
into it, and then peel it off and throw it away.  Correction tape comes in two widths, “2 line” and “6 
line”. The 2-line width is good for single-line text fields, and the 6-line width for text areas. You 
can get correction tape at the Office Max in East Cambridge. 

Overhead transparencies are useful for two purposes. First, you can make a selection highlight by 
cutting a piece of transparency to size and coloring it with a transparency marker.  Second, when you 
have a form with several text fields in it, it’s easier to just lay a transparency over the form and let 
the users write on that, rather than sticking a piece of correction tape in every field. Pearl Arts in 
Central Square sells colored transparencies that you can use for selection highlighting. 

If you have many similar elements in your prototype, a photocopier can save you time. 

And, of course, the usual kindergarten equipment: pens, markers, scissors, tape. 
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A paper prototype should be larger than life-size.  Remember that fingers are bigger than a mouse 

pointer, and people usually write bigger than 12 point.  So it’ll be easier to use your paper prototype 

if you scale it up a bit. It will also be easier to see from a distance, which is important because the 

prototype lies on the table, and because when you’re testing users, there may be several observers 

taking notes who need to see what’s going on.  Big is good. 

Don’t worry too much about color in your prototype.  Use a single color.  It’s simpler, and it won’t 

distract attention from the important issues. 

You don’t have to render every visual effect in paper.  Some things are just easier to say aloud: “the 

basketball is spinning.” “A progress bar pops up: 20%, 50%, 75%, done.”  If your design supports 

tooltips, you can tell your users just to point at something and ask “What’s this?”, and you’ll tell 

them what the tooltip would say.  If you actually want to test the tooltip messages, however, you 

should prototype them on paper. 

Figure out a good scheme for organizing the little pieces of your prototype.  One approach is a three-

ring binder, with different screens on different pages.  Most interfaces are not sequential, however, so 

a linear organization may be too simple. Two-pocket folders are good for storing big pieces, and 

letter envelopes (with the flap open) are quite handy for keeping menus. 
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Here are some of the prototypes made by an earlier class. Should a paper prototype be hand-

sketched or computer-drawn?  Generally hand-sketching is better in early design, but sometimes 

realistic images can be constructive additions. Top left is a prototype for an interface that will be 

integrated into an existing program (Eclipse), so the prototype is mostly constructed of modified 

Eclipse screenshots. The result is very clean and crisp, but also tiny – it’s hard to read from a 

distance. It may also be harder for a test user to focus on commenting about the new parts of the 

interface, since the new features look just like Eclipse. A hybrid hand-sketched/screenshot interface 

might work even better. 

The top right prototype shows such a hybrid – a interface designed to integrate into a web browser.  

Actual screenshots of web pages are used, mainly as props, to make the prototype more concrete and 

help the user visualize the interface better.  Since web page layout isn’t the problem the interface is 

trying to solve, there’s no reason to hand-sketch a web page. 

The bottom photo shows a pure hand-sketched interface that might have benefited from such props --

a photo organizer could use real photographs to help the user think about what kinds of things they 

need to do with photographs. This prototype could also use a window frame – a big posterboard to 

serve as a static background. 
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Both of these prototypes have good window frames, but the big one on the right is easier to read and 

manipulate. 
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This prototype is even easier to read. Markers are better than pencil. (Whiteout and correction tape 

can fix mistakes as well as erasers can!) Color is also neat, but don’t bother unless color is a design 

decision that needs to be tested, as it is in this prototype. If color doesn’t really matter, 

monochromatic prototypes work just as well. 
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The prototype on the left has lots of little pieces that have trouble staying put. Post-it glue can help 

with that. 

On the right is a prototype that’s completely covered with a transparency.  Users can write on it 

directly with dry-erase marker, which just wipes off – a much better approach than water-soluble 

transparency markers. With multiple layers of transparency, you can let the user write on the top 

layer, while you use a lower layer for computer messages, selection highlighting, and other effects. 
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s great for prototyping features that would be difficult to implement.  This project (a conPaper i tact 

manager) originally envisioned showing your social network as a graph, but when they prototyped it, 

it turned out that it wasn't too useful. The cost of trying that feature on paper was trivial, so it was 

easy to throw it away.  Trying it in code, however, would have taken much longer, and been much 

harder to discard. 
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The spirit of low-fidelity prototyping is really about using cheap physical objects to simulate 

software. Paper makes sense for desktop and web UIs because they’re flat. But other kinds of UI 

prototypes might use different materials. Jeff Hawkins carried a block of wood (not this one, but 

similar) around in his pocket as a prototype for the first PalmPilot. 

http://www.designinginteractions.com/interviews/JeffHawkins 
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http://www.flickr.com/photos/benchan/150095284/
http://www.designinginteractions.com/interviews/JeffHawkins
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Doing several prototypes and presenting them to the same user is a great idea. When a design is 

presented with others, people tend to be more ready to criticize and offer problems, which is 

exactly what you want in the early stages of design. These three paper prototypes of a house 

thermostat were tested against users both singly and as a group of three, and it was found that people 

offered fewer positive comments when they saw the designs together than when they saw them 

alone. 

Pictures from Tohidi, Buxton, Baecker, Sellen. “Getting the Right Design and the Design Right: 

Testing Many Is Better Than One.” CHI 2006. 
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Once you’ve built your prototype, you can put it in front of users and watch how they use it. We’ll 

see much more about user testing in a later lecture, including ethical issues. But here’s a quick 

discussion of user testing in the paper prototyping domain. 

There are three roles for your design team to fill: 

The computer is the person responsible for making the prototype come alive. This person moves 

around the pieces, writes down responses, and generally does everything that a real computer would 

do. In particular, the computer should not do anything that a real computer wouldn’t.  Think 

mechanically, and respond mechanically. 

The facilitator is the human voice of the design team and the director of the testing session. The 

facilitator explains the purpose and process of the user study, obtains the user’s informed consent, 

and presents the user study tasks one by one. While the user is working on a task, the facilitator tries 

to elicit verbal feedback from the user, particularly encouraging the user to “think aloud” by asking 

probing (but not leading) questions. The facilitator is responsible for keeping everybody disciplined 

and the user test on the right track. 

Everybody else in the room (aside from the user) is an observer. The most important rule about 

being an observer is to keep your mouth shut and watch. Don’t offer help to the user, even if they’re 

missing something obvious. Bite your tongue, sit on your hands, and just watch. The observers are 

the primary note takers, since the computer and the facilitator are usually too busy with their duties. 
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Paper prototypes can reveal many usability problems that are important to find in early stages of 

design. Fixing some of these problems require large changes in design.  If users don’t understand the 

metaphor or conceptual model of the interface, for example, the entire interface may need to be 

scrapped. 
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But paper prototypes don’t reveal every usability problem, because they are low-fidelity in several dimensions. 

Obviously, graphic design issues that depend on a high-fidelity look will not be discovered. Similarly, 

interaction issues that depend on a high-fidelity feel will also be missed. For example, problems like buttons 

that are too small, too close together, or too far away will not be detected in a paper prototype.  The human 

computer of a paper prototype rarely reflects the speed of an implemented backend, so issues of response time 

– whether feedback appears quickly enough, or whether an entire task can be completed within a certain time 

constraint -- can’t be tested either. 

Paper prototypes don’t help answer questions about whether subtle feedback will even be noticed. Will users 

notice that message down in the status bar, or the cursor change, or the highlight change?  In the paper 

prototype, even the tiniest change is grossly visible, because a person’s arm has to reach over the prototype and 

make the change. (If many changes happen at once, of course, then some of them may be overlooked even in a 

paper prototype. This is related to an interesting cognitive phenomenon called change blindness.) 

There’s an interesting qualitative distinction between the way users use paper prototypes and the way they use 

real interfaces. Experienced paper prototypers report that users are more deliberate with a paper prototype, 

apparently thinking more carefully about their actions. This may be partly due to the simulated computer’s 

slow response; it may also be partly a social response, conscientiously trying to save the person doing the 

simulating from a lot of tedious and unnecessary paper shuffling.  More deliberate users make fewer mistakes, 

which is bad, because you want to see the mistakes. Users are also less likely to randomly explore a paper 

prototype. 

These drawbacks don’t invalidate paper prototyping as a technique, but you should be aware of them.  Several 

studies have shown that low-fidelity prototypes identify substantially the same usability problems as high-

fidelity prototypes (Virzi, Sokolov, & Karis, “Usability problem identification using both low- and hi-fidelity 

prototypes”, CHI ’96; Catani & Biers, “Usability evaluation and prototype fidelity”, Human Factors & 

Ergonomics 1998). 
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So at some point we have to depart from paper and move our prototypes into software. A typical 

computer prototype is a horizontal prototype. It’s high-fi in look and feel, but low-fi in depth – 

there’s no backend behind it.  Where a human being simulating a paper prototype can generate new 

content on the fly in response to unexpected user actions, a computer prototype cannot. 
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Computer prototypes help us get a handle on the graphic design and dynamic feedback of the 

interface. 
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One way to build a computer prototype is just to program it directly in an implementation language, 

like Java or C++, using a user interface toolkit, like Swing or MFC. If you don’t hook in a backend, 

or use stubs instead of your real backend, then you’ve got a horizontal prototype. 

But it’s often better to use a prototyping tool instead. Building an interface with a tool is usually 

faster than direct coding, and there’s no code to debug.  It’s easier to change it, or even throw it away 

if your design turns out to be wrong. Recall Cooper’s concerns about prototyping: your computer 

prototype may become so elaborate and precious that it becomes your final implementation, even 

though (from a software engineering point of view) it might be sloppily designed and 

unmaintainable. 

Also, when you go directly from paper prototype to code, there’s a tendency to let your UI toolkit 

handle all the graphic design for you. That’s a mistake.  For example, Java has layout managers that 

automatically arrange the components of an interface. Layout managers are powerful tools, but they 

produce horrible interfaces when casually or lazily used. A prototyping tool will help you envision 

your interface and get its graphic design right first, so that later when you move to code, you know 

what you’re trying to persuade the layout manager to produce. 

Even with a prototyping tool, computer prototypes can still be a tremendous amount of work. When 

drag & drop was being considered for Microsoft Excel, a couple of Microsoft summer interns were 

assigned to develop a prototype of the feature using Visual Basic.  They found that they had to 

implement a substantial amount of basic spreadsheet functionality just to test drag & drop. It took 

two interns their entire summer to build the prototype that proved that drag & drop was useful. 

Actually adding the feature to Excel took a staff programmer only a week. This isn’t a fair 

comparison, of course – maybe six intern-months was a cost worth paying to mitigate the risk of one 

fulltimer-week, and the interns certainly learned a lot.  But building a computer prototype can be a 

slippery slope, so don’t let it suck you in too deeply.  Focus on what you want to test, i.e., the design 

risk you need to mitigate, and only prototype that. 
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There are two major techniques for building a computer prototype.  

A storyboard is a sequence (a graph, really) of fixed screens. Each screen has one or more hotspots  

that you can click on to jump to another screen. Sometimes the transitions between screens also  

involve some animation in order to show a dynamic effect, like mouse-over feedback or drag-drop  

feedback.  

A form builder is a tool for drawing real, working interfaces by dragging widgets from a palette and  

positioning them on a window.   

A Wizard of Oz prototype is a kind of hybrid of a computer prototype and a paper prototype; the  

user interacts with a computer, but there’s a human behind the scenes figuring out how the user  

interface should respond.  
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Photoshop is classically used for storyboarding (also called “wireframe” prototypes), but here are 

some other tools that are increasing in popularity.  Balsamiq Mockup and Mockingbird each offer a 

drawing canvas and a palette of graphical objects that look like widgets that can be dragged onto it. 

These tools are different from form builders, however, in that the result is just a picture – the widgets 

aren’t real, and they aren’t functional. 

These wireframe tools strive for some degree of “sketchiness” in their look, so these are really 

medium-fidelity tools. Not as low fidelity as hand sketch, but still not what the final interface will 

look like. 
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The big advantage of storyboarding is similar to the advantage of paper: you can draw anything on a 

storyboard. That frees your creativity in ways that a form builder can’t, with its fixed palette of 

widgets. 

The disadvantages come from the storyboard’s static nature.  Some tools let you link the pictures 

together with hyperlinks, but even then all you can do is click, not really interact. Watching a real 

user in front of a storyboard often devolves into a game of “hunt for the hotspot”, like children’s 

software where the only point is to find things on the screen to click on and see what they do. The 

hunt-for-the-hotspot effect means that storyboards are largely useless for user testing, unlike paper 

prototypes. In general, horizontal computer prototypes are better evaluated with other techniques, 

like heuristic evaluation (which we’ll discuss in a future lecture). 
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Here are some form builder tools.  
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Unlike storyboards, form builders use actual working widgets, not just static pictures. So the 

widgets look the same as they will in the final implementation (assuming you’re using a compatible 

form builder – a prototype in Visual Basic may not look like a final implementation in Java). 

Also, since form builders usually have an implementation language underneath them – which may 

even be the same implementation language that you’ll eventually use for your final interface -- you 

can also hook in as much or as little backend as you want. 

On the down side, form builders give you a fixed palette of standard widgets, which limits your 

creativity as a designer, and which makes form builders far less useful for prototyping rich graphical 

interfaces, e.g., a circuit-drawing editor.  Form builders are great for the menus and widgets that 

surround a graphical interface, but can’t simulate the “insides” of the application window. 
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Part of the power of paper prototypes is the depth you can achieve by having a human simulate the backend. 

A Wizard of Oz prototype also uses a human in the backend, but the frontend is an actual computer system 

instead of a paper mockup. The term Wizard of Oz comes from the movie of the same name, in which the 

wizard was a man hiding behind a curtain, controlling a massive and impressive display.   

In a Wizard of Oz prototype, the “wizard” is usually but not always hidden from the user.  Wizard of Oz 

prototypes are often used to simulate future technology that isn’t available yet, particularly artificial 

intelligence. A famous example was the listening typewriter (Gould, Conti, & Hovanyecz, “Composing letters 

with a simulated listening typewriter,” CACM v26 n4, April 1983).  This study sought to compare the 

effectiveness and acceptability of isolated-word speech recognition, which was the state of the art in the early 

80’s, with continuous speech recognition, which wasn’t possible yet.  The interface was a speech-operated text 

editor.  Users looked at a screen and dictated into a microphone, which was connected to a typist (the wizard) 

in another room. Using a keyboard, the wizard operated the editor showing on the user’s screen.   

The wizard’s skill was critical in this experiment.  She could type 80 wpm, she practiced with the simulation 

for several weeks (with some iterative design on the simulator to improve her interface), and she was careful to 

type exactly what the user said, even exclamations and parenthetical comments or asides. The computer 

helped make her responses a more accurate simulation of computer speech recognition. It looked up every 

word she typed in a fixed dictionary, and any words that were not present were replaced with X’s, to simulate 

misrecognition. Furthermore, in order to simulate the computer’s ignorance of context, homophones were 

replaced with the most common spelling, so “done” replaced “dun”, and “in” replaced “inn”. The result was an 

extremely effective illusion.  Most users were surprised when told (midway through the experiment) that a 

human was listening to them and doing the typing. 

Thinking and acting mechanically is harder for a wizard than it is for a paper prototype simulator, because the 

tasks for which Wizard of Oz testing is used tend to be more “intelligent”.  It helps if the wizard is personally 

familiar with the capabilities of similar interfaces, so that a realistic simulation can be provided. (See Maulsby 

et al, “Prototyping an intelligent agent through Wizard of Oz”, CHI 1993.)  It also helps if the wizard’s 

interface can intentionally dumb down the responses, as was done in the Gould study. 

A key challenge in designing a Wizard of Oz prototype is that you actually have two interfaces to worry about: 

the user’s interface, which is presumably the one you’re testing, and the wizard’s. 
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