
� 

6.832 - Underactuated Robotics	 Problem Set 3, Spring ’09 

This problem set is due by 11:59pm on Tuesday, March 31.  
 

Problem 1 (Optimal Swing-up for the Simple Pendulum) Consider the dynamics 
of the simple pendulum given by: ml2q̈ + bq̇ + mgl sin(q) = u, where m = 1, l = 1, 
b = 0.1, g = 9.8. Your goal for this problem will be to minimize the cost function 

tf	 1 
J = 50(π − q(tf ))2 + 50 ̇q 2(tf ) + u 2(t)dt (1)
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using the SNOPT sequential quadratic programming (SQP) package that was discussed 
in class, while computing the required gradients via back-propagation through time 
(BPTT). When computing the gradients for this problem, take note that the cost in 
(1) includes a terminal cost that penalizes the final state [q(tf ), q̇(tf )]T at tf = 2.5 
seconds. We will parameterize the policy as an open-loop tape of actions using a tape 
with a control time-step of .01 seconds and 251 entries (from t = 0 to t = 2.5). 

a)	 Back-Propagation Through Time (BPTT) The SQP methods discussed in class 
require the gradients of the plant, cost, and policy in order to perform the update 
to the parameters. Determine the (explicit) expressions for Fx, Gx, Fα, and 
Gα, including policy gradients. (See the course notes for the definition of these 
expressions). 

b) The Lagrange multiplier derivation of BPTT (section 12.3.3 in the notes) sets 
y(T ) = 0 (i.e. zeroes out the lagrange multiplier at the final time step). How›
ever, for the cost function given in eq.(1) this does not hold. Determine y(T ) for 
this case. 

c) Download the files pend_snopt.m and pendfun.m from the course website, 
as well as the SNOPT student version1. These files contains a basic matlab skele›
ton implementation calling SNOPT and using the BPTT algorithm to calculate 
the gradients for the swing-up task. You will need to complete the implementa›
tion by computing the appropriate gradients, integrating the adjoint equations, 
filling in the cost functions, etc. We have commented the code where necessary. 
Submit your code and a trajectory plot for your final solution. You should be 
able to converge to a solution that gets the pendulum sufficiently close to the top 
(to within ∼ 5 degrees). 
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       This can be found at http://www.ccom.ucsd.edu/~peg/Software.html. Simply
download, unzip, and include the snopt package in your MATLAB path. 

http://www.scicomp.ucsd.edu/�peg/Software.html
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Problem 2 (Single-Pump Swing-up for the Cart-Pole) For this problem, you will 
solve for a policy that will achieve the cart-pole swing-up task by minimizing the cost 
function � 1.5 

J = 50(π − θ(tf ))2 + 50θ̇2(tf ) + 50x(tf )2 + 50ẋ 2(tf ) + 
1 

u 2(t)dt (2)
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where θ, x denote the pole angle and cart position, respectively. Parameterize your 
policy strictly by time, i.e. 

u[i] = αi (3) 

where i is the ith discrete time step of your simulation. You should use your implemen›
tation for Problem 1 as a starting point, replacing the necessary plant/policy gradients 
(again use SNOPT to perform the optimization, and BPTT to compute the gradients). 
Submit your code and plots of the final trajectory. You should be able to converge to 
a solution that gets the pendulum sufficiently close to the top (to within ∼ 5 degrees), 
e.g. within the basin of attraction of LQR (which you don’t need to implement for this 
exercise). The equations of motion for this problem are: 

ẍ = 
1 

� 

u + sin θ 

� 
θ̇2 

+ g cos θ 

�� 

(4)
1 + sin2 θ 2 

¨ 2 θ̇2 

θ =
(1 + sin2 θ) 

−u cos θ − 
2 

cos θ sin θ − 2g sin θ (5) 

where we have set mc = 1, mp = 1, l = 0.5. 
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Problem 3 (The Rimless Wheel) For this problem, you should be able to compute all 
of the quantities in closed form. A simulation of the rimless wheel is available on the 
class website, in case you find it useful for confirming your answers or your intuition. 
Also, see the course notes for the definition of variables. 

a)	 Passive Dynamics. If we assume that the wheel is started in a configuration di›
rectly after a transfer of support, then forward walking occurs when the system 
has an initial velocity θ̇(0+) > ω1. When the next foot touches down the conver›
sion of potential energy into kinetic energy yields the velocity before touchdown 
θ̇(t−). Derive the expressions for ω1 and θ̇(t−). Show your work. Describe in 
words why ω1 = 0 when γ = α, and why ω1 is nonexistent when γ > α. 

b)	 Gait Design. Consider a rimless wheel w/ m = 1 kg, g = 9.8 m/s2 , α = π 
8 

rad, and γ = 0.08 rad. For what leg length, l, is the steady-state rolling speed of 
the system (measured when the pendulum is vertical over the stance feet: θ = 0) 
equal to 4.0 rad/sec? 

c)	 Terrain “Stability”. Consider a rimless wheel with m = 1 kg, l = 1 m, g = 9.8 
m/s2, and α = π 

8 rad rolling down a slope, γ = 0.16 rad. Some time after reach›
ing the rolling steady state, the terrain shallows to γ = 0.02 rad for a distance 
d, then returns to (and remains at) γ = 0.08 rad. You may assume that the shal›
low slope begins and ends precisely at a position of touchdown (not somewhere 
between steps). What is the largest value of d, subject to these constraints, for 
which the system will be at a rolling fixed point when γ = 0.08 as t →∞? 
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