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6.837: Computer Graphics Fall 2012
 

Programming Assignment 4: Ray Casting 

In this assignment, you will implement a ray caster. This will be the basis of your final assignment, so proper 
code design is quite important. As seen in class, a ray caster sends a ray for each pixel and intersects it with 
all the objects in the scene. Your ray caster will support perspective cameras as well as several primitives 
(spheres, planes, and triangles). You will also have to support phong shading and texture mapping. 

The remainder of this document is organized as follows: 

1. Getting Started 

2. Summary of Requirements 

3. Starter Code 

4. Implementation Notes 

5. Test Cases 

6. Hints 

7. Extra Credit 

8. Submission Instructions 

Getting Started 

Note that this assignment is non-trivial. Please start as early as possible. One significant way in 
which this assignment differs from previous assignments is that you start off with a lot less starter code. 

Run the sample solution a4soln as follows: 

./a4soln -input scene01_plane.txt -size 200 200 -output output01.bmp -depth 8 12 depth01.bmp 

This will generate an image named output01.bmp. We’ll describe the rest of the command-line parameters 
later. When your program is complete, you will be able to render this scene as well as well as the other test 
cases given below. 
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2 Summary of Requirements 

This section summarizes the core requirements of this assignment. There are a lot of them and you should 
start early. Let’s walk through them. 

You will use object-oriented design to make your ray caster flexible and extendable. A generic Object3D 
class will serve as the parent class for all 3D primitives. You will derive subclasses (such as Sphere, Plane, 
Triangle, Group, Transform, Mesh) to implement specialized primitives. Similarly, this assignment requires 
the implementation of a general Camera class with perspective camera subclasses. 

You will implement Phong shading with texture mapping. We will focus on diffuse and specular shading. 
Diffuse shading is our first step toward modeling the interaction of light and materials. Specular shading 
will be explained later when you get the basic components working. Given the direction to the light L and 
the normal N we can compute the diffuse shading as a clamped dot product: 

 
L · N if L · N > 0 

d =
0 otherwise 

If the object has diffuse color kd = (r, g, b) (in case the object has texture, just use the texture color 
instead), and the light source has color clight = (Lr, Lg, Lb), then the pixel color is cpixel = (rLrd, gLgd, bLbd). 
Multiple light sources are handled by simply summing their contributions. We can also include an ambient 
light with color cambient, which can be very helpful for debugging. Without it, parts facing away from the 
light source appear completely black. Putting this all together, the formula is: 

   
cpixel = cambient ∗ ka + clamp(Li · N) ∗ clight ∗ kd

i

Color vectors are multiplied term by term. Note that if the ambient light color is (1, 1, 1) and the light 
source color is (0, 0, 0), then you have constant shading. 

You may optionally implement two visualization modes. One mode will display the distance t of each 
pixel to the camera. The other mode is a visualization of the surface normal. For the normal visualization, 
you will simply display the absolute value of the coordinates of the normal vector as an (r, g, b) color. For 
example, a normal pointing in the positive or negative z direction will be displayed as pure blue (0, 0, 1). 
You should use black as the color for the background (undefined normal). 

Your code will be tested using a script on all the test cases below. Make sure that your program handles 
the exact same arguments as the examples below. 
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3 Starter Code 

(As always, you can add files or modify any files. You can even start from scratch.) 

Compile the code with make. You can type make clean; make to rebuild everything from scratch. 

The Image class is used to initialize and edit the RGB values of images. Be careful—do not try to read 
or write to pixels outside the bounds of the image. The class also includes functions for saving simple .bmp 
image files (and .tga files). 

For linear algebra, you should use the vecmath library that you are familiar with from previous assign
ments. 

We provide you with a Ray class and a Hit class to manipulate camera rays and their intersection points, 
and a skeleton Material class. A Ray is represented by its origin and direction vectors. The Hit class stores 
information about the closest intersection point, normal, texture coordinates, the value of the ray parameter 
t and a pointer to the Material of the object at the intersection. The Hit data structure must be initialized 
with a very large t value (try FLT MAX). It is modified by the intersection computation to store the new 
closest t and the Material of intersected object. 

Your program should take a number of command line arguments to specify the input file, output image 
size and output file. Make sure the examples below work, as this is how we will test your program. A simple 
scene file parser for this assignment is provided. Several constructors and the Group::addObject method 
you will write are called from the parser (and will be a source for many compilation errors initially). Look 
in the scene parser.cpp file for details. 

If you’re interested, the scene description file grammar used in this assignment is included in the source 
file distribution. 
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4 Implementation Notes 

This is a very large assignment. We can’t repeat this enough. Here’s a suggested recipe to follow to get as 
far as possible, as quickly as possible. 

1. Look at the virtual Object3D class (a virtual class in C++ is like an abstract class in Java). It only 
provides the specification for 3D primitives, and in particular the ability to be intersected with a ray 
via the virtual method: virtual bool intersect( const Ray& r, Hit& h, float tmin ) = 0; 

Since this method is pure virtual for the Object3D class, the prototype in the header file includes ‘= 0’. 
This ‘= 0’ tells the compiler that Object3D won’t implement the method, but that subclasses derived 
from Object3D must implement this routine. An Object3D stores a pointer to its Material type. The 
Object3D class has: 

• a default constructor and destructor 

• a pointer to a Material instance 

• a pure virtual intersection method 

2. Fill in	 Sphere, a subclass of Object3D, that additionally stores a center point and a radius. The 
Sphere constructor will be given a center, a radius, and a pointer to a Material instance. The Sphere 
class implements the virtual intersect method mentioned above (but without the ‘= 0’): virtual 
bool intersect(const Ray& r, Hit& h, float tmin); 

With the intersect routine, we are looking for the closest intersection along a Ray, parameterized by 
t. tmin is used to restrict the range of intersection. If an intersection is found such that t > tmin and 
t is less than the value of the intersection currently stored in the Hit data structure, Hit is updated 
as necessary. Note that if the new intersection is closer than the previous one, both t and Material 
must be modified. It is important that your intersection routine verifies that t >= tmin. tmin is not 
modified by the intersection routine. 

3. Fill in Group, also a subclass of Object3D, that stores a list of pointers to Object3D instances. For 
example, it will be used to store all objects in the entire scene. You’ll need to write the intersect 
method of Group which loops through all these instances, calling their intersection methods. The 
Group constructor should take as input the number of objects under the group. The group should 
include a method to add objects: void addObject(int index, Object3D* obj); 

4. Look at the pure virtual Camera class (in Java parlance, an interface). The Camera class has two pure 
virtual methods: 

virtual Ray generateRay( const Vector2f& point ) = 0; 
virtual float getTMin() const = 0;
 

The first is used to generate rays for each screen-space coordinate, described as a Vector2f. The
 
getTMin() method will be useful when tracing rays through the scene. For a perspective camera, the
 
value of tmin will be zero to correctly clip objects behind the viewpoint (already provided).
 

5. Fill in	 PerspectiveCamera class that inherits Camera. Choose your favorite internal camera repre
sentation. The scene parser provides you with the center, direction, and up vectors. The field of 
view is specified with an angle (as shown in the diagram). PerspectiveCamera( const Vector3f& 
center, const Vector3f& direction, const Vector3f& up, float angle ); Here up and direc
tion are not necessarily perpendicular. The u, v, w vectors are computed using cross products. w = 
direction, u = w×up, v = u×w. The camera does not know about screen resolution. Image resolution 
should be handled in your main loop. 
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Hint: In class, we often talk about a “virtual screen” in space. You can calculate the location and 
extents of this “virtual screen” using some simple trigonometry. You can then sample points on the 
virtual screen. Direction vectors can then be calculated by subtracting the camera center point from 
the screen point. Don’t forget to normalize! In contrast, if you iterate over the camera angle to obtain 
your direction vectors, your scene will look distorted - especially for large camera angles, which will 
give the appearance of a fisheye lens. Note: the distance to the image plane and the size of the image 
plane are unnecessary. Why? 

6.	 SceneParse is completely implemented for you. Use it to load the camera, background color and 
objects of the scene from scene files. 

7. Write the main function that reads the scene (using the parsing code provided), loops over the pixels 
in the image plane, generates a ray using your camera class, intersects it with the high-level Group 
that stores the objects of the scene, and writes the color of the closest intersected object. Up to this 
point, you may choose to render some spheres with a single color. If there is an intersection, use one 
color and if not, use another color. 

8. (Optional, but good for debugging) Implement an alternative rendering style to visualize the depth 
t of objects in the scene. Two input depth values specify the range of depth values which should be 
mapped to shades of gray in the visualization. Depth values outside this range should be clamped. 

9. Update your sphere intersection routine to pass the correct normal to the Hit. 

10. (Optional) Implement normal visualization.	 Add code to parse an additional command line option 
-normals <normal file.bmp> to specify the output file for this visualization. 

11. Implement diffuse shading in Material class, ignoring textures for now. We provide the pure virtual 
Light class and two subclasses: directional light and point light. Scene lighting can be accessed with 
the SceneParser::getLight() and 
SceneParser::getAmbientLight() methods. Use the Light method: 

void getIllumination( const Vector3f& p, Vector3f& dir, Vector3f& col ); 
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to find the illumination at a particular location in space. p is the intersection point that you want to
shade, and the function returns the normalized direction toward the light source in dir and the light
color and intensity in col.

12. Implement Plane, an infinite plane primitive derived from Object3D. Use the representation of your
choice, but the constructor is assumed to be:

Plane( const Vector3f& normal, float d, Material* m );

d is the offset from the origin, meaning that the plane equation is P · n = d. You can also implement
other constructors (e.g., using 3 points). Implement intersect, and remember that you also need to
update the normal stored by Hit, in addition to the intersection distance t and color.

13. Fill in triangle primitive which also derives from Object3D. The constructor takes 3 vertices:

Triangle( const Vector3f& a, const Vector3f& b, const Vector3f& c, Material* m );

Use the method of your choice to implement the ray-triangle intersection, preferably using barycentric
coordinates. Suppose we have barycentric coordinates λ0, λ1, λ2 and vertex normals n0,n1,n2, the
interpolated normal can be computed as

λ0n0 + λ1n1 + λ2n2.

Texture coordinates can be interpolated in the same way.

14. Fill in subclass Transform from Object3D. Similar to a Group, a Transform will store a pointer to an
Object3D (but only one, not an array). The constructor of a Transform takes a 4× 4 matrix as input
and a pointer to the Object3D modified by the transformation: Transform( const Matrix4f& m,

Object3D* o ); The intersect routine will first transform the ray, then delegate to the intersect

routine of the contained object. Make sure to correctly transform the resulting normal according to
the rule seen in lecture. You may choose to normalize the direction of the transformed ray or leave it
un-normalized. If you decide not to normalize the direction, you might need to update some of your
intersection code. Instancing.

15. Implement specular component in the Phong shading model. This is as simple as adding another
formula.

The intensity cs depends on four quantities: shininess s, ray direction d, direction to the light L and
the normal N. We can first compute the direction R of the reflected ray using d and N. The specular
shading intensity is another clamped dot {product:

(L ·R)s if L
cs =

·R > 0

0 otherwise

If the object has specular color ks = (sr, sg, sb) , and the light source has color clight = (Lr, Lg, Lb),
then the pixel color is cpixel = (srLrcs, sgLgcs, sbLbcs)

Combining this with diffuse and ambient, the formula is:

cpixel = cambient ∗ ka +
∑[

clamp(Li ·N) ∗ clight ∗ kd + clamp(Li

i

·R)s ∗ clight ∗ ks .

16. Texture mapping. This is the last item. The scene parser will load texture and coordinates

]
for you.

We also provide a Texture class that facilitates texture look-up. All that remains are interpolating
texture coordinate in Triangle’s intersect function, and looking up texture coordinates in Material’s
Shade function. If the material has valid texture indicated by t.valid(), then simply use the texture
color instead of kd. The texture color can be retrieved by

Vector3f color = t(u,v);

Where u, v is the texture coordinate.
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5 Test Cases 

Your assignment will be graded by running a script that runs these examples below. Make sure your ray 
caster produces the same output (up to visual perception). 

./a4 -input scene01 plane.txt -size 200 200 -output 1.bmp 

./a4 -input scene02 cube.txt -size 200 200 -output 2.bmp 

./a4 -input scene03 sphere.txt -size 200 200 -output 3.bmp 

./a4 -input scene04 axes.txt -size 200 200 -output 4.bmp 

./a4 -input scene05 bunny 200.txt -size 200 200 -output 5.bmp 

./a4 -input scene06 bunny 1k.txt -size 200 200 -output 6.bmp 

7 



./a4 -input scene07 shine.txt -size 200 200 -output 7.bmp 

./a4 -input scene08 c.txt -size 200 200 -output 8.bmp 

./a4 -input scene09 s.txt -size 200 200 -output 9.bmp 

6 Hints 

•	 Incremental debugging. Implement and test one primitive at a time. Test one shading a time. Ambient, 
diffuse, specular, and then texture. 

•	 Use a small image size for faster debugging. 64 × 64 pixels is usually enough to realize that something 
might be wrong. 

•	 As usual, don’t hesitate to print as much information as needed for debugging, such as the direction 
vector of the rays, the hit values, etc. 

•	 Use assert() to check function preconditions, array indices, etc. See cassert. 

•	 The “very large” negative and positive values for t used in the Hit class and the intersect routine can 
simply be initialized with large values relative to the camera position and scene dimensions. However, 
to be more correct, you can use the positive and negative values for infinity from the IEEE floating 
point standard. 

•	 Parse the arguments of the program in a separate function. It will make your code easier to read. 

•	 Implement the normal visualization and diffuse shading before the transformations. 

•	 Use the various rendering modes (normal, diffuse, distance) to debug your code. This helps you locate 
which part of your code is buggy. 

7 Extra Credit 

Note that there isn’t much extra credit for this assignment. That’s because we want you to focus on a good 
design so that your code will survive not only this assignment but the next one as well. 
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7.1 Easy 

•	 Add simple fog to your ray tracer by attenuating rays according to their length. Allow the color of the 
fog to be specified by the user in the scene file. 

•	 Add other types of simple primitives to your ray tracer, and extend the file format and parser accord
ingly. For instance, how about a cylinder or cone? These can make your scenes much more interesting. 

•	 Add a new oblique camera type (or some other weird camera). In a standard camera, the projection 
window is centered on the z-axis of the camera. By sliding this projection window around, you can get 
some cool effects. 

7.2 Medium 

•	 Implement a torus or higher order implicit surfaces by solving for t with a numerical root finder. 

•	 Implement texture mapping for spheres. Render a bunch of planets in some space scene for example. 

•	 Implement environment mapping for objects (sphere maps or cube maps). 

•	 Load more interesing textured models and put them into new scenes. Note that the starter code only 
loads .bmp image files. The Mesh utility only loads .obj files with a single texture map. 

7.3 Hard 

•	 Add normal mapping (aka bump mapping). 

•	 Bloom: render multiple passes and do some blurring. 

•	 Depth of field blurring. The camera can focus on some distance and objects out of focus are blurred 
depending on how far it is from the focal plane. It doesn’t have to be optically correct, but it needs to 
be visually pleasing. 

8 Submission Instructions 

You are to write a README.txt (or optionally a PDF) that answers the following questions: 

•	 How do you compile your code? Provide instructions for Athena Linux. You will not need to provide 
instructions on how to run your code, because it must run with the exact command line given earlier 
in this document. 

•	 Did you collaborate with anyone in the class? If so, let us know who you talked to and what sort of 
help you gave or received. 

•	 Were there any references (books, papers, websites, etc.) that you found particularly helpful for 
completing your assignment? Please provide a list. 
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•	 Are there any known problems with your code? If so, please provide a list and, if possible, describe 
what you think the cause is and how you might fix them if you had more time or motivation. This 
is very important, as we’re much more likely to assign partial credit if you help us understand what’s 
going on. 

•	 Did you do any of the extra credit? If so, let us know how to use the additional features. If there was 
a substantial amount of work involved, describe what how you did it. 

•	 Got any comments about this assignment that you’d like to share? 

Submit your assignment online. Please submit a single archive (.zip 
or .tar.gz) containing: 

•	 Your source code. 

•	 A compiled executable named a4. 

•	 Any additional files that are necessary. 

•	 The README file. 
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