6.837 Computer Graphics

Bézier Curves and Splines

Wojciech Matusik MIT CSAIL

vectorportal.com

6.837 – Matusik

Before We Begin

- Anything on your mind concerning Assignment 0?
- Any questions about the course?

- Assignment 1 (Curves & Surfaces)
- Linear algebra review session

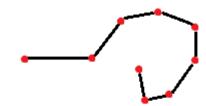
Today

- Smooth curves in 2D
 - Useful in their own right
 - Provides basis for surface editing

This image is in the public domain Source: Wikimedia Commons

Modeling 1D Curves in 2D

- Polylines
 - Sequence of vertices connected by straight line segments
 - Useful, but not for smooth curves
 - This is the representation that usually gets drawn in the end (a curve is converted into a polyline)
- Smooth curves
 - How do we specify them?
 - A little harder (but not too much)

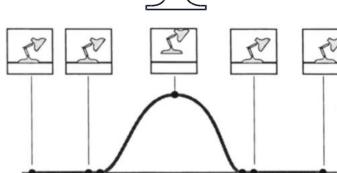


Splines

- A type of smooth curve in 2D/3D
- Many different uses
 - 2D illustration (e.g., Adobe Illustrator)
 - Fonts (e.g., PostScript, TrueType)
 - 3D modeling
 - Animation: trajectories
- In general: interpolation and approximation

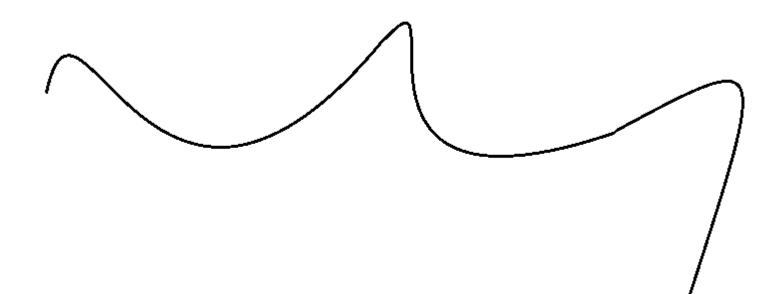
ACM © 1987 "Principles of traditional animation applied to 3D computer animation"

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

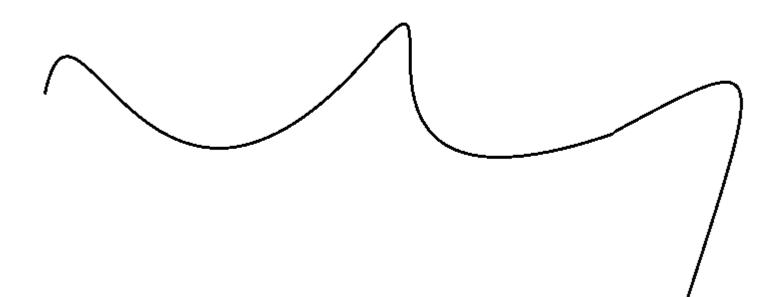


Demo

How Many Dimensions?

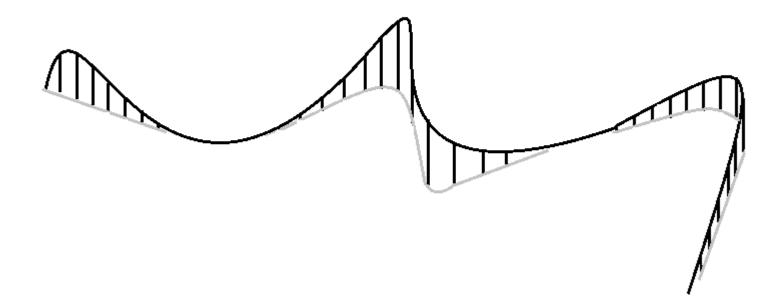


How Many Dimensions?



This curve lies on the 2D plane, but is itself 1D.

How Many Dimensions?



This curve lies on the 2D plane, but is itself 1D. You can just as well define 1D curves in 3D space.

Two Definitions of a Curve

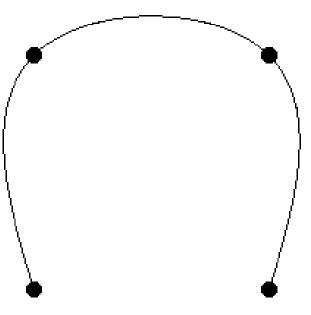
- A continuous 1D set of points in 2D (or 3D)
- A mapping from an interval S onto the plane
 That is, *P(t)* is the point of the curve at parameter *t*

$$P : \mathbb{R} \ni S \mapsto \mathbb{R}^2, \quad P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

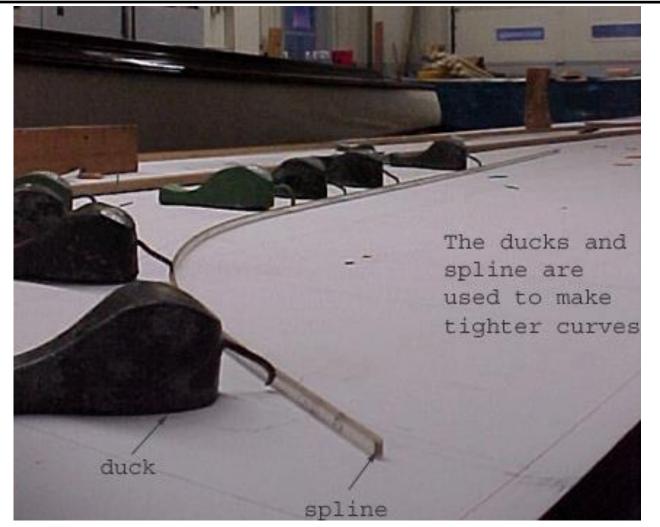
- Big differences
 - It is easy to generate points on the curve from the 2nd
 - The second definition can describe trajectories, the speed at which we move on the curve

General Principle of Splines

- User specifies control points
- We will interpolate the control points by a smooth curve
 - The curve is completely determined by the control points.



Physical Splines



Courtesy of The Antique Boat Museum.

Two Application Scenarios

- Approximation/interpolation
 - We have "data points", how can we interpolate?
 - Important in many applications
- User interface/modeling
 - What is an easy way to specify
 - a smooth curve?
 - Our main perspective today.

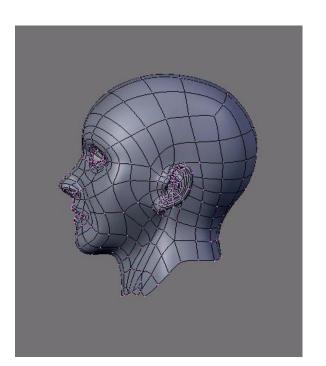


Image courtesy of SaphireS on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Splines

- Specified by a few control points
 - Good for UI
 - Good for storage

- Results in a smooth parametric curve P(t)
 - Just means that we specify x(t) and y(t)
 - In practice: low-order polynomials, chained together
 - Convenient for animation, where *t* is time
 - Convenient for *tessellation* because we can discretize
 t and approximate the curve with a polyline

- It is easy to rasterize mathematical line segments into pixels
 - OpenGL and the graphics hardware can do it for you
- But polynomials and other parametric functions are harder

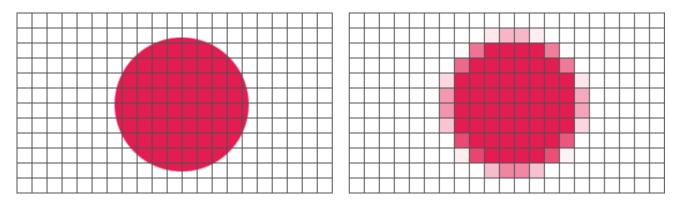
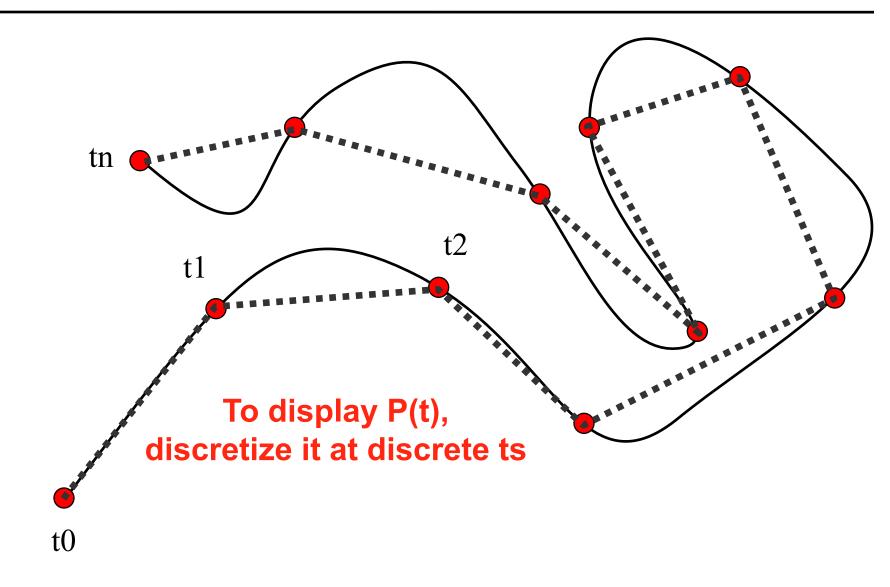
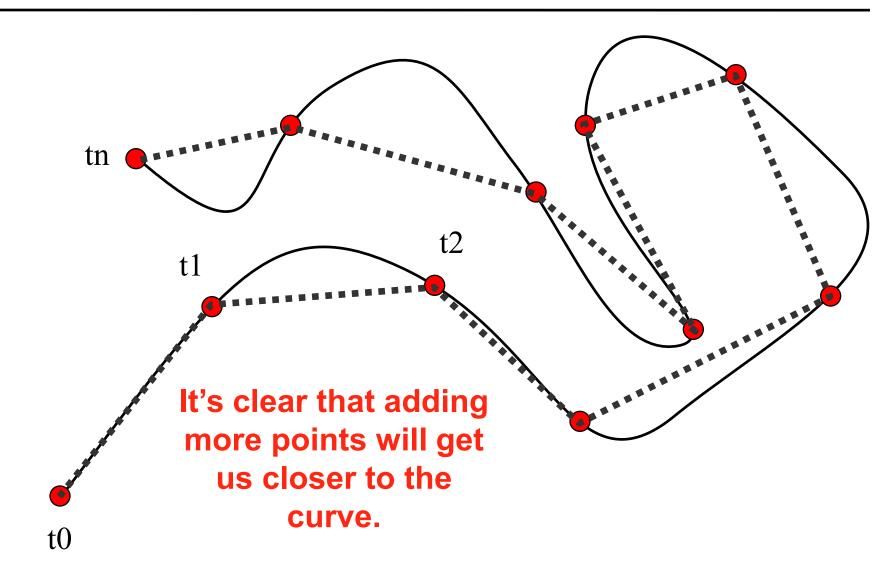
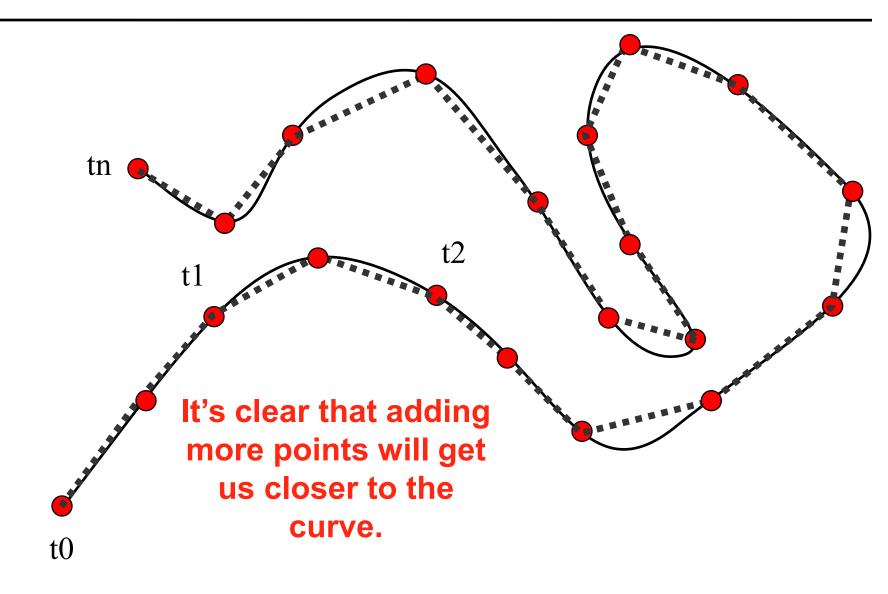


Image courtesy of Phrood on Wikimedia Commons. License: CC-BY-SA.This content is excluded from our Creative Commons license. For moreinformation, see http://ocw.mit.edu/help/faq-fair-use/.

6.837 - Durand



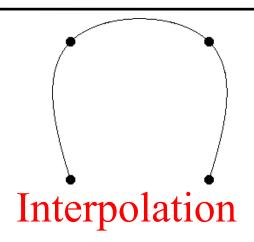


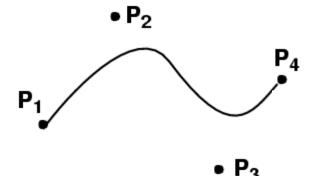


Interpolation vs. Approximation

- Interpolation
 - Goes through all specified points
 - Sounds more logical

- Approximation
 - Does not go through all points



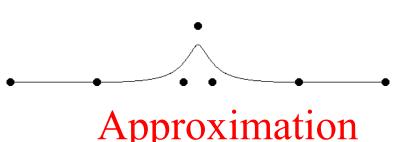


Approximation

Interpolation vs. Approximation

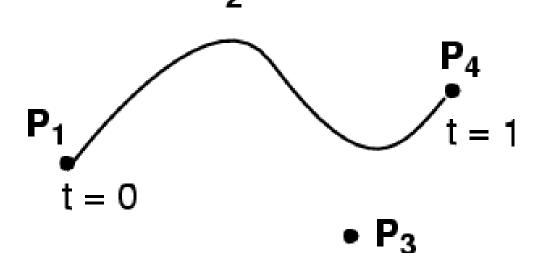
- Interpolation
 - Goes through all specified points
 - Sounds more logical
 - But can be more unstable
- Approximation
 - Does not go through all points
 - Turns out to be convenient

• We will do something in between.



Questions?

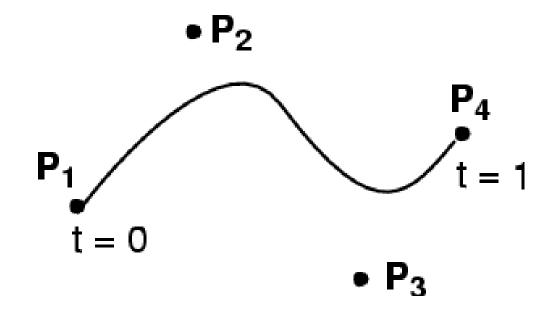
- User specifies 4 control points P1 ... P4
- Curve goes through (interpolates) the ends P1, P4
- Approximates the two other ones
- Cubic polynomial



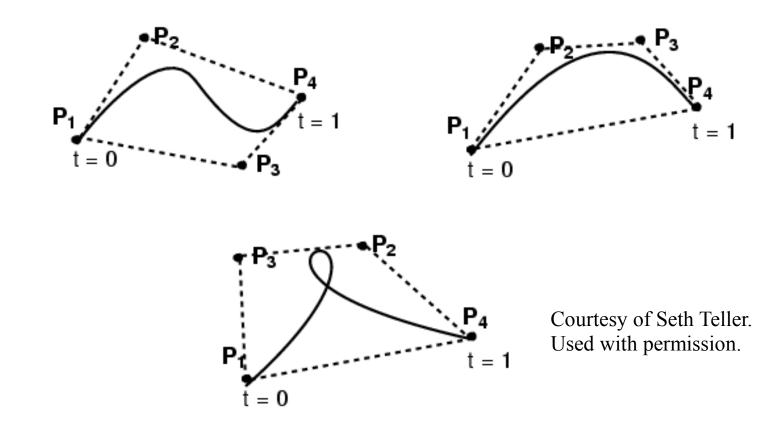
•
$$P(t) = (1-t)^3$$
 $P1$
+ $3t(1-t)^2$ $P2$
+ $3t^2(1-t)$ $P3$
+ t^3 $P4$
• P_2
• P_2
• P_3
That is,
 $x(t) = (1-t)^3 x_1 + 3t(1-t)^2 x_2 + 3t^2(1-t) x_3 + t^3 x_4$
 $y(t) = (1-t)^3 y_1 + 3t(1-t)^2 y_2 + 3t^2(1-t) y_3 + t^3 y_4$

•
$$P(t) = (1-t)^3$$
 P1
+ $3t(1-t)^2$ P2
+ $3t^2(1-t)$ P3
+ t^3 P4

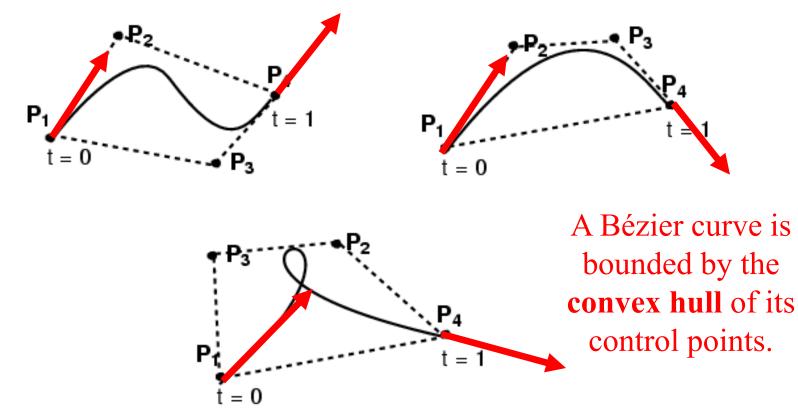
Verify what happens for t=0 and t=1



- 4 control points
- Curve passes through first & last control point



- 4 control points
- Curve passes through first & last control point
- Curve is tangent at P1 to (P1-P2) and at P4 to (P4-P3)



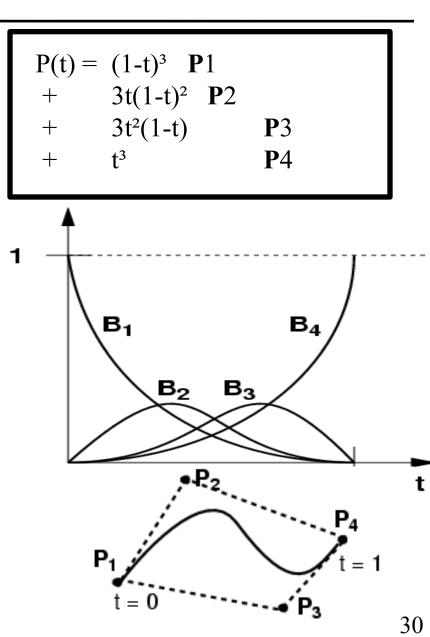
Questions?

Why Does the Formula Work?

- Explanation 1:
 - Magic!
- Explanation 2:
 - These are smart weights that describe the influence of each control point
- Explanation 3:
 - It is a linear combination of *basis polynomials*.

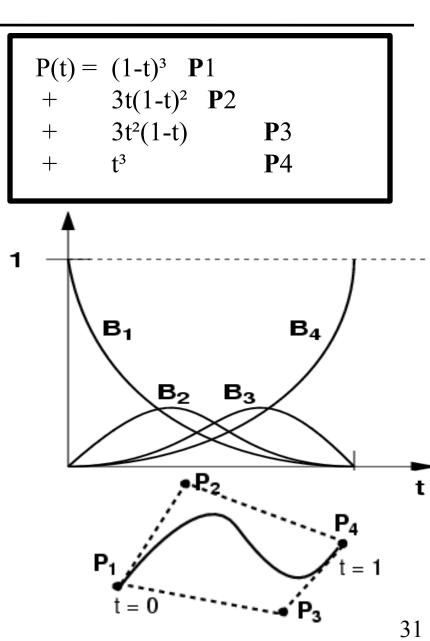
Weights

- P(t) is a weighted combination of the 4 control points with weights:
 - $-B1(t)=(1-t)^{3}$
 - $-B2(t)=3t(1-t)^{2}$
 - $-B3(t)=3t^{2}(1-t)$ $-B4(t)=t^{3}$
- First, P1 is the most influential point, then P2, P3, and P4



Weights

- P2 and P3 never have full influence
 - Not interpolated!



Questions?

Why Does the Formula Work?

- Explanation 1:
 - Magic!
- Explanation 2:
 - These are smart weights that describe the influence of each control point
- Explanation 3:
 - It is a linear combination of *basis polynomials*.
 - The opposite perspective:
 - control points are the weights of polynomials!!!

Why Study Splines as Vector Space?

- Understand relationships between types of splines
 Conversion
- Express what happens when a spline curve is transformed by an affine transform (rotation, translation, etc.)
- Cool simple example of non-trivial vector space
- Important to understand for advanced methods such as finite elements

Usual Vector Spaces

- In 3D, each vector has three components *x*, *y*, *z*
- But geometrically, each vector is actually the sum

k

$$v = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$

- Vector addition: just add components
- Scalar multiplication: just multiply components

Polynomials as a Vector Space

- Polynomials $y(t) = a_0 + a_1 t + a_2 t^2 + ... + a_n t^n$
- Can be added: just add the coefficients

$$(y+z)(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + \ldots + (a_n + b_n)t^n$$

• Can be multiplied by a scalar: multiply the coefficients

$$s \cdot y(t) =$$

$$(s \cdot a_0) + (s \cdot a_1)t + (s \cdot a_2)t^2 + \ldots + (s \cdot a_n)t^n$$

Polynomials as a Vector Space

• Polynomials $y(t) = a_0 + a_1 t + a_2 t^2 + ... + a_n t^n$

• In the polynomial vector space, {1, *t*, ..., *t*n} are the basis vectors, *a*0, *a*1, ..., *a*n are the components

Questions?

Subset of Polynomials: Cubic

$$y(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

- Closed under addition & scalar multiplication
 Means the result is still a cubic polynomial (verify!)
- Cubic polynomials also compose a vector space
 A 4D subspace of the full space of polynomials
- The *x* and *y* coordinates of cubic Bézier curves belong to this subspace as functions of *t*.

Basis for Cubic Polynomials

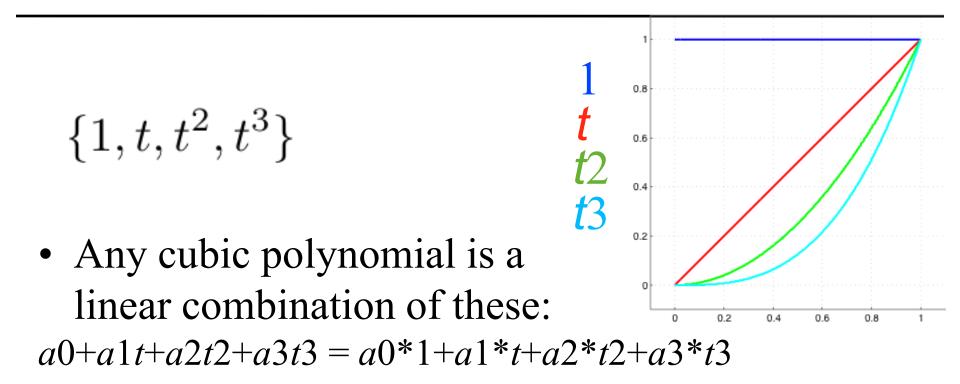
More precisely: What's a basis?

- A set of "atomic" vectors
 - Called basis vectors
 - Linear combinations of basis vectors span the space
 - i.e. any cubic polynomial is a sum of those basis cubics
- Linearly independent
 - Means that no basis vector can be obtained from the others by linear combination
 - Example: i, j, i+j is not a basis (missing k direction!)

$$\vec{v} = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$

$$In \,3D$$

Canonical Basis for Cubics



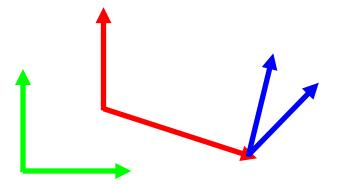
- They are linearly independent
 - Means you cannot write any of the four monomials as a linear combination of the others. (You can try.)

Different Basis

• For example:

2D examples

- $-\{1, 1+t, 1+t+t^2, 1+t-t^2+t^3\}$
- $-\{t3, t3+t2, t3+t, t3+1\}$



- These can all be obtained from $1, t, t^2, t^3$ by linear combination
- Infinite number of possibilities, just like you have an infinite number of bases to span R2

Matrix-Vector Notation

"Canonical" • For example: Change-of-basis monomial 1, 1+t, 1+t+t², 1+t-t²+t³ basis matrix t^3 , t^3+t^2 , t^3+t , t^3+1

 These
 1

 relationships
 1+t

 hold for each
 $1+t+t^2$

 value of t $1+t-t^2+t^3$ = $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$
value of t $\begin{pmatrix} t^3 \\ t^3 + t^2 \\ t^3 + t \\ t^3 + 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$

Matrix-Vector Notation

"Canonical" • For example: Change-of-basis monomial 1, 1+t, 1+t+t2, 1+t-t2+t3 matrix basis t3, t3+t2, t3+t, t3+1 $\begin{pmatrix} 1\\1+t\\1+t+t^{2}\\1+t-t^{2}+t^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0\\1 & 1 & 0 & 0\\1 & 1 & 1 & 0\\1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1\\t\\t^{2}\\t^{3} \end{pmatrix}$ Not any matrix will do! If it's singular, the basis set will be linearly dependent i.e. $\begin{pmatrix} t^3 \\ t^3 + t^2 \\ t^3 + t \\ t^3 + 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$ dependent, i.e., redundant and incomplete.

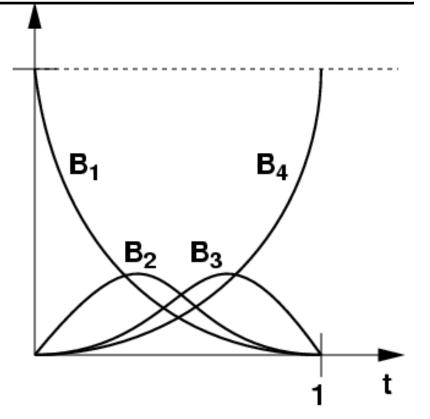
Bernstein Polynomials

• For Bézier curves, the 1 basis polynomials/vectors are Bernstein polynomials

• For cubic Bezier curve: $B1(t)=(1-t)^{3} B2(t)=3t(1-t)^{2}$ $B3(t)=3t^{2}(1-t) B4(t)=t^{3}$

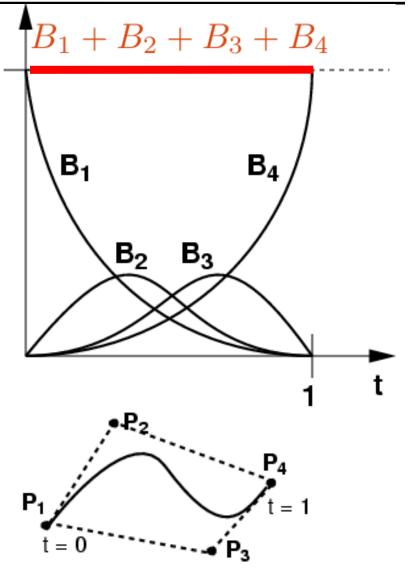
(careful with indices, many authors start at 0)

• Defined for any degree



Properties of Bernstein Polynomials

- ≥ 0 for all $0 \leq t \leq 1$
- Sum to 1 for every *t* – called *partition of unity*
- These two together are the reason why Bézier curves lie within convex hull
- B1(0) = 1
 - Bezier curve interpolates P1
- B4(1)=1
 - Bezier curve interpolates P4



Bézier Curves in Bernstein Basis

- P(t) = P1B1(t) + P2B2(t) + P3B3(t) + P4B4(t)- Pi are 2D points (xi, yi)
- P(*t*) is a linear combination of the control points with weights equal to Bernstein polynomials at *t*
- But at the same time, the control points (P1, P2, P3, P4) are the "coordinates" of the curve in the Bernstein basis
 - In this sense, specifying a Bézier curve with control points is exactly like specifying a 2D point with its x and y coordinates.

Two Different Vector Spaces!!!

- The plane where the curve lies, a 2D vector space
- The space of cubic polynomials, a 4D space
- Don't be confused!
- The 2D control points can be replaced by 3D points this yields space curves.

- The math stays the same, just add z(t).

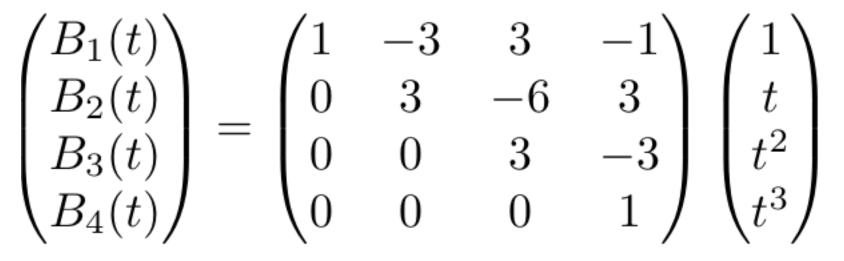
- The cubic basis can be extended to higher-order polynomials
 - Higher-dimensional vector space
 - More control points

Questions?

Change of Basis

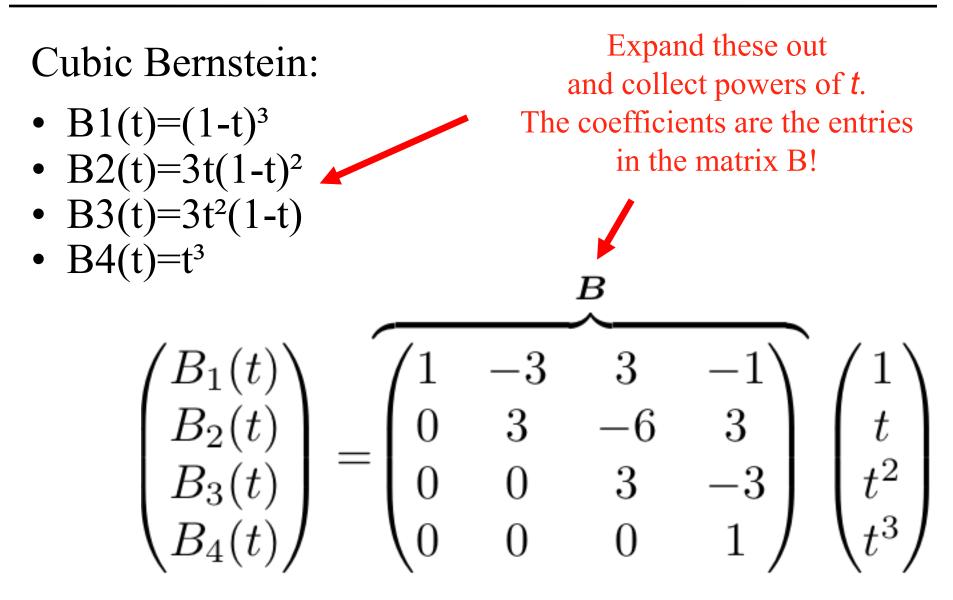
- How do we go from Bernstein basis to the canonical monomial basis
- 1, *t*, t^2 , t^3 and back?
 - With a matrix!

- $B1(t)=(1-t)^3$
- B2(t)= $3t(1-t)^2$
- $B3(t)=3t^2(1-t)$
- $B4(t)=t^{3}$



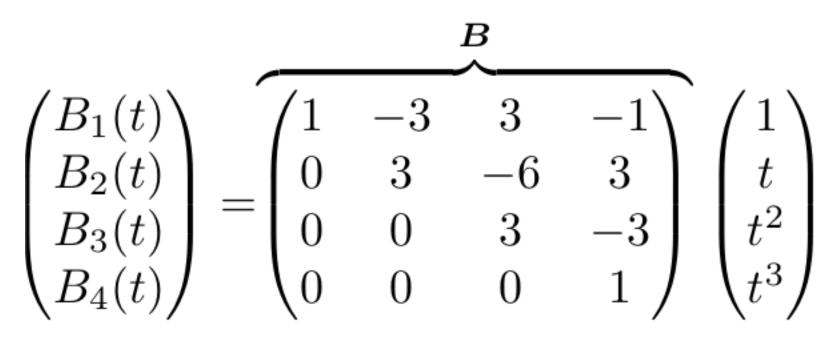
New basis vectors

How You Get the Matrix



Change of Basis, Other Direction

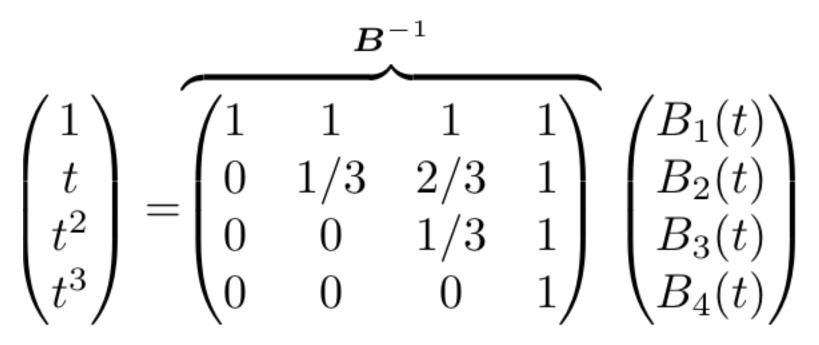
• Given B1...B4, how to get back to canonical 1, *t*, *t*², *t*³?



Change of Basis, Other Direction

That's right, with the inverse matrix!

• Given B1...B4, how to get back to canonical 1, *t*, *t*², *t*³?



Recap

- Cubic polynomials form a 4D vector space.
- Bernstein basis is canonical for Bézier.
 - Can be seen as influence function of data points
 - Or data points are coordinates of the curve in the Bernstein basis
- We can change between basis with matrices.

Questions?

More Matrix-Vector Notation

$$P(t) = \sum_{i=1}^{4} P_i \ B_i(t) = \sum_{i=1}^{4} \left[\begin{pmatrix} x_i \\ y_i \end{pmatrix} B_i(t) \right]$$

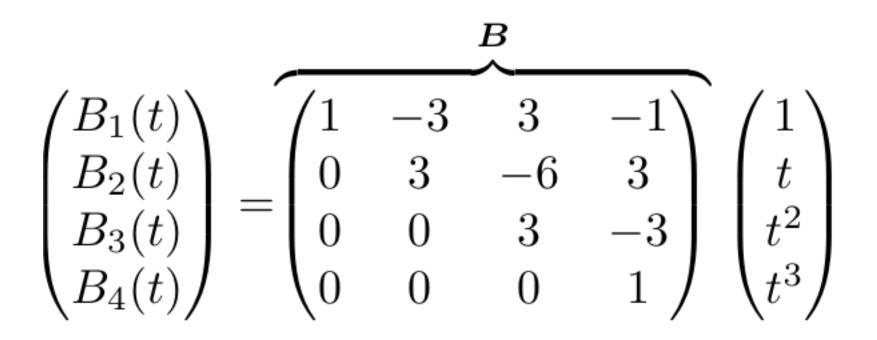
Bernstein polynomials (4x1 vector)

 $\begin{array}{c}
B_2(t) \\
B_3(t)
\end{array}$

$$P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix}$$

point on curve (2x1 vector) matrix of control points (2 x 4)

Flashback



Cubic Bézier in Matrix Notation

point on curve

$$\begin{array}{l}
(2x1 \text{ vector}) \\
P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = & \begin{array}{c} Canonical \\
monomial basis \\
\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \\
\begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix} \\
\begin{array}{c} \text{"Geometry matrix"} \\
\text{of control points P1..P4} \\
(2 \times 4) & \begin{array}{c} \text{"Spline matrix"} \\
\text{(Bernstein)} \end{array}$$

General Spline Formulation

 $Q(t) = \mathbf{GBT}(\mathbf{t}) = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

- Geometry: control points coordinates assembled into a matrix (P1, P2, ..., Pn+1)
- Spline matrix: defines the type of spline
 Bernstein for Bézier
- Power basis: the monomials (1, t, ..., *t*n)
- Advantage of general formulation
 - Compact expression
 - Easy to convert between types of splines
 - Dimensionality (plane or space) does not really matter

Questions?

A Cubic Only Gets You So Far

• What if you want more control?

Higher-Order Bézier Curves

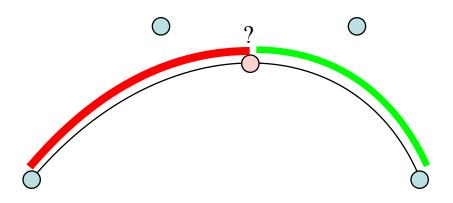
- > 4 control points
- Bernstein Polynomials as the basis functions
 For polynomial of order *n*, the *ith* basis function is

$$B_i^n(t) = rac{n!}{i!(n-i)!} t^i (1-t)^{n-i}$$

- Every control point affects the entire curve
 - Not simply a local effect
 - More difficult to control for modeling
- You will not need this in this class

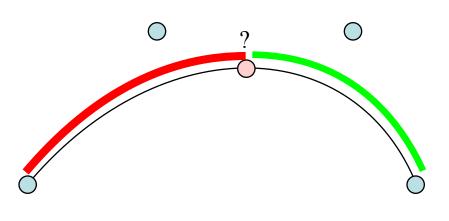
Subdivision of a Bezier Curve

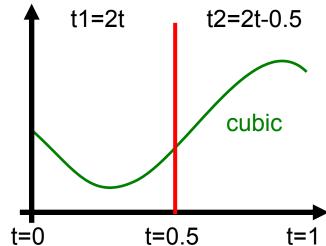
- Can we split a Bezier curve in the middle into two Bézier curves?
 - This is useful for adding detail
 - It avoids using nasty higher-order curves



Subdivision of a Bezier Curve

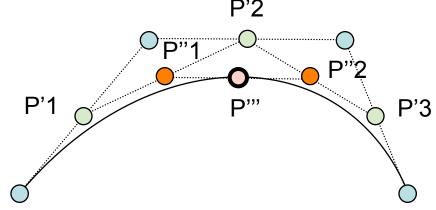
- Can we split a Bezier curve in the middle into two Bézier curves?
 - The resulting curves are again a cubic (Why? A cubic in *t* is also a cubic in 2*t*)
 - Hence it must be representable using the Bernstein basis. So yes, we can!
 t1=2t





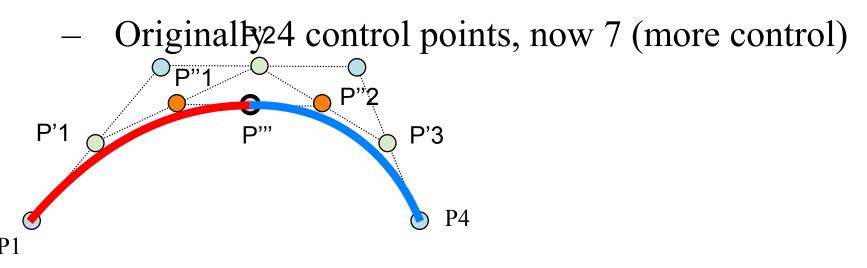
De Casteljau Construction

- Take the middle point of each of the 3 segments
- Construct the two segments joining them
- Take the middle of those two new segments
- Join them
- Take the middle point P""



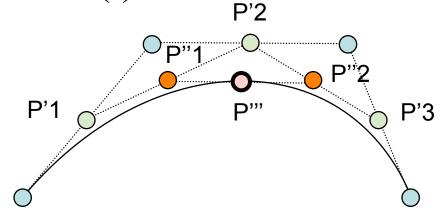
Result of Split in Middle

- The two new curves are defined by
 - P1, P'1, P"1, and P"
 - P"", P"2, P'3, and P4
- Together they exactly replicate the original curve!



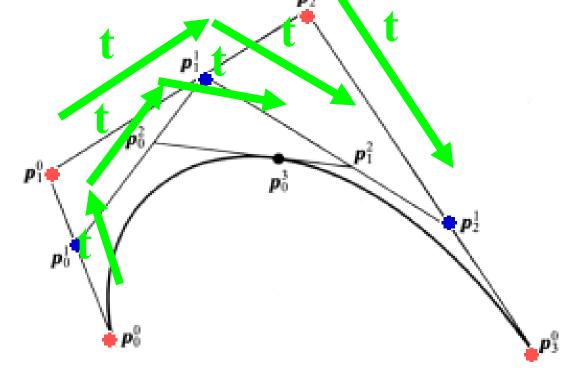
Sanity Check

- Do we actually get the middle point?
- $B1(t)=(1-t)^3$
- $B2(t)=3t(1-t)^2$
- $B3(t)=3t^2(1-t)$
- $B4(t)=t^3$



De Casteljau Construction

- Actually works to construct a point at any *t*, not just 0.5
- Just subdivide the segments with ratio (1-*t*), *t* (not in the middle)



Recap

- Bezier curves: piecewise polynomials
- Bernstein polynomials
- Linear combination of basis functions
 - Basis: control points weights: polynomialsBasis: polynomials weights: control points
- Subdivision by de Casteljau algorithm
- All linear, matrix algebra

Recap

- Bezier curves: piecewise polynomials
- Bernstein polynomials
- Linear combination of basis functions
 - Basis: control points weights: polynomialsBasis: polynomials weights: control points
- Subdivision by de Casteljau algorithm
- All linear, matrix algebra

That's All for Today, Folks

- Further reading
 - Buss, Chapters 7 and 8

- Fun stuff to know about function/vector spaces
 - http://en.wikipedia.org/wiki/Vector_space
 - http://en.wikipedia.org/wiki/Functional_analysis
 - http://en.wikipedia.org/wiki/Function_space

 Inkscape is an open source vector drawing program for Mac/Windows. Try it out!
 vectorportal.com MIT OpenCourseWare http://ocw.mit.edu

6.837 Computer Graphics Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.