6.837 Computer Graphics

Curve Properties & Conversion, Surface Representations

Cubic Bezier Splines

•
$$P(t) = (1-t)^3$$
 P1
+ $3t(1-t)^2$ P2
+ $3t^2(1-t)$ P3
+ t^3 P4

Bernstein Polynomials

 For Bézier curves, the 1 basis polynomials/vectors are Bernstein polynomials

• For cubic Bezier curve: $B_1(t)=(1-t)^3$ $B_2(t)=3t(1-t)^2$ $B_3(t)=3t^2(1-t)$ $B_4(t)=t^3$

(careful with indices, many authors start at 0)

• Defined for any degree

B₁

 B_2

General Spline Formulation

 $Q(t) = \mathbf{GBT}(\mathbf{t}) = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

- Geometry: control points coordinates assembled into a matrix (P1, P2, ..., Pn+1)
- Power basis: the monomials 1, *t*, *t*2, ...
- Cubic Bézier:

$$P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^{2} \\ t^{3} \end{pmatrix}$$

Questions?

Linear Transformations & Cubics

• What if we want to transform each point on the curve with a linear transformation **M**?

$$P'(t) = \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$

Linear Transformations & Cubics

- What if we want to transform each point on the curve with a linear transformation **M**?
 - Because everything is linear, it is the same as transforming only the control points

$$P'(t) = \mathbf{M} \left(\begin{array}{cccc} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{array} \right) \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$
$$= \mathbf{M} \left(\begin{array}{cccc} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{array} \right) \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$

Affine Transformations

- Homogeneous coordinates also work
 - Means you can translate, rotate, shear, etc.
 - Note though that you need to normalize P' by 1/w'

$$P'(t) = \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & t \\ t^2 \\ t^3 \end{pmatrix}$$
$$= \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & t \\ t^2 \\ t^3 \end{pmatrix}$$

Questions?

The Plan for Today

- Differential Properties of Curves & Continuity
- B-Splines
- Surfaces
 - Tensor Product Splines
 - Subdivision Surfaces
 - Procedural Surfaces
 - Other

Differential Properties of Curves

- Motivation
 - Compute normal for surfaces
 - Compute velocity for animation
 - Analyze smoothness

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves? $P(t) = (1-t)^{3} P1$ $+ 3t(1-t)^{2} P2$ $+ 3t^{2}(1-t) P3$ $+ t^{3} P4$ P_{1} t = 0
- You know how to differentiate polynomials...

Pa

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves? $P(t) = (1-t)^3 P1$ • P2 $+ 3t(1-t)^2 P2$ $+ 3t^{2}(1-t) P3$ P₁ $+ t^{3} P4$ t = 0 ۰ Pa • P'(t) = -3(1-t)2**P1**

Sanity check: t=0; t=1

P2 + [3(1-t) 2 - 6t(1-t)]+ [6t(1-t)-3t 2]**P3** + 3t 2 **P4**

Linearity?

- Differentiation is a linear operation
 - -(f+g)'=f'+g'
 - (af)'=a f'
- This means that the derivative of the basis is enough to know the derivative of any spline.
- Can be done with matrices
 - Trivial in monomial basis
 - But get lower-order polynomials

Tangent Vector

• The tangent to the curve P(t) can be defined as T(t)=P'(t)/||P'(t)||

- normalized velocity, ||T(t)|| = 1

• This provides us with one orientation for swept surfaces later

Courtesy of Seth Teller.

Curvature Vector

- Derivative of unit tangent
 - -K(t)=T'(t)
 - Magnitude ||K(t)|| is constant for a circle
 - Zero for a straight line
- Always orthogonal to tangent, ie. $K \cdot T = 0$

Geometric Interpretation

- K is zero for a line, constant for circle – What constant? 1/r
- 1/||K(t)|| is the radius of the circle that touches
 P(t) at *t* and has the same curvature as the curve

Curve Normal

• Normalized curvature: T'(t)/||T'(t)||

Questions?

Orders of Continuity

- C0 = continuous
 - The seam can be a sharp kink
- G1 = geometric continuity
 - Tangents point to the same direction at the seam
- C1 = parametric continuity
 - Tangents are the same at the seam, implies G1
- C2 = curvature continuity
 - Tangents and their derivatives are the same

Orders of Continuity

- G1 = geometric continuity
 - Tangents **point to the same direction** at the seam
 - good enough for modeling
- C1 = parametric continuity
 - Tangents are the same at the seam, implies G1
 - often necessary for animation

Connecting Cubic Bézier Curves

- How can we guarantee C0 continuity?
- How can we guarantee G1 continuity?
- How can we guarantee C1 continuity?
- C2 and above gets difficult

Connecting Cubic Bézier Curves

- Where is this curve
- C0 continuous?
- G1 continuous?
- C1 continuous?
- What's the relationship between:
- the # of control points, and the # of cubic Bézier subcurves?

Questions?

• \geq 4 control points • Locally cubic - Cubics chained together, again.

≥ 4 control points
 Locally cubic
 P1/t=0
 P3/t=0
 P3/t=0
 P3/t=0
 P5/t=0
 P5/t=0

≥ 4 control points
 Locally cubic
 P1 = 0
 P3
 P4
 P5
 P7
 P7

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.
- Curve is not constrained to pass through any control points

 P_4

ÞΡ́ε

Cubic B-Splines: Basis

Cubic B-Splines: Basis

Cubic B-Splines: Basis

- Local control (windowing)
- Automatically C2, and no need to match tangents!

Courtesy of Seth Teller. Used with permission.

B-Spline Curve Control Points

discontinuity

through end points

Repeat interior control

point

Repeat end points

Bézier ≠ B-Spline

Bézier

B-Spline

But both are cubics, so one can be converted into the other!

Converting between Bézier & BSpline

 $Q(t) = \mathbf{GBT}(t)$ = Geometry $\mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T}(t)$

- Simple with the basis matrices!
 - Note that this only works for $B_{Bezier} = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ a single segment of 4 control points
- P(t) = G B1 T(t) =**G B1 (B2-1B2) T(t)=** (**G B1 B2-1) B2 T(t)** $B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ **G B1 B2-1** are the control points
- for the segment in new basis.
Converting between Bézier & B-Spline

NURBS (Generalized B-Splines)

- Rational cubics
 - Use homogeneous coordinates, just add w !
 - Provides an extra weight parameter to control points

- NURBS: Non-Uniform Rational B-Spline
 - non-uniform = different spacing between the blending functions, a.k.a. "knots"
 - rational = ratio of cubic polynomials (instead of just cubic)
 - implemented by adding the homogeneous coordinate *w* into the control points.

Questions?

Representing Surfaces

- Triangle meshes
 - Surface analogue of polylines, this is what GPUs draw
- Tensor Product Splines
 - Surface analogue of spline curves
- Subdivision surfaces
- Implicit surfaces, e.g. f(x,y,z)=0
- Procedural
 - e.g. surfaces of revolution, generalized cylinder
- From volume data (medical images, etc.)

Triangle Meshes

- What you've used so far in Assignment 0
- Triangle represented by 3 vertices
- **Pro**: simple, can be rendered directly
- **Cons**: not smooth, needs many triangles to approximate smooth surfaces (tessellation)

This image is in the public domain. Source: Wikimedia Commons.

Smooth Surfaces?

•
$$P(t) = (1-t)^3$$
 P1
+ $3t(1-t)^2$ P2
+ $3t^2(1-t)$ P3
+ t^3 P4

What's the dimensionality of a curve? 1D!

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u, v) = (1-u)^3$$
 $P1(v)$
+ $3u(1-u)^2$ $P2(v)$
+ $3u^2(1-u)$ $P3(v)$
+ u^3 $P4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P1(v)$
+ $3u(1-u)^2$ $P2(v)$
+ $3u^2(1-u)$ $P3(v)$
+ u^3 $P4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P1(v)$
+ $3u(1-u)^2$ $P2(v)$
+ $3u^2(1-u) P3(v)$
+ u^3 $P4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P1(v)$
+ $3u(1-u)^2$ $P2(v)$
+ $3u^2(1-u) P3(v)$
+ u^3 $P4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P1(v)$
+ $3u(1-u)^2$ $P2(v)$
+ $3u^2(1-u)$ $P3(v)$
+ u^3 $P4(v)$

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

A 2D surface patch!

In the previous, Pis were just some curves What if we make **them** Bézier curves?

- In the previous, Pis were just some curves What if we make **them** Bézier curves?
- Each u=const. **and** v=const. curve is a Bézier curve! Note that the boundary control points (except corners) are NOT interpolated!

A bicubic Bézier surface

The "Control Mesh" 16 control points

Bicubics, Tensor Product

Bicubics, Tensor Product

•
$$P(u,v) = B1(u) * P1(v)$$

+ $B2(u) * P2(v)$
+ $B3(u) * P3(v)$
+ $B4(u) * P4(v)$
• $Pi(v) = B1(v) * Pi, 1$
+ $B2(v) * Pi, 2$
+ $B3(v) * Pi, 3$
+ $B4(v) * Pi, 4$
 $P(u, v) = \sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v)\right]$
 $= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u, v)$
 $B_{i,j}(u, v) = B_i(u) B_j(v)$

Bicubics, Tensor Product

$$P(u, v) =$$

$$4 \qquad [4]$$

$$16 \text{ control points Pi,j}$$

$$16 \text{ 2D basis functions Bi,j}$$

$$= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u, v)$$

$$B_{i,j}(u, v) = B_i(u) B_j(v)$$

Recap: Tensor Bézier Patches

- Parametric surface P(u,v) is a bicubic polynomial of two variables u & v
- Defined by 4x4=16 control points P1,1, P1,2....
 P4,4
- Interpolates 4 corners, approximates others
- Basis are product of two Bernstein polynomials: B1(u)B1(v); B1(u)B2(v);... B4(u)B4(v)

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, vThe partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
- Both are tangent to surface at P

 $\ensuremath{\mathbb{C}}$ Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, vThe partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
- Both are tangent to surface at P
- Normal is perpendicular to both, i.e.,

 $n = (\partial P / \partial u) \times (\partial P / \partial v)$

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Recap: Matrix Notation for Curves

• Cubic Bézier in matrix notation

point on curve

$$(2x1 \text{ vector})$$

 $P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} =$
Canonical
"power basis"
 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix}$
 $\begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$
"Geometry matrix"
of control points P1..P4
 $(2 \ge 4)$
(Bernstein)

Hardcore: Matrix Notation for Patches

• Not required, but convenient!

> x coordinate of surface at (*U*,*V*)

$$P^x(u,v) =$$

$$P(u,v) = \sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

Column vector of basis functions (V)

$$(B_1(u),\ldots,B_4(u))\begin{pmatrix}P_{1,1}^x&\ldots&P_{1,4}^x\\\vdots&&\vdots\\P_{4,1}^x&\ldots&P_{4,4}^x\end{pmatrix}\begin{pmatrix}B_1(v)\\\vdots\\B_4(v)\end{pmatrix}$$
Row vector of

Row vector of basis functions (*u*)

4x4 matrix of x coordinates of the control points

Hardcore: Matrix Notation for Patches

• Curves:

$$P(t) = \boldsymbol{G} \boldsymbol{B} \boldsymbol{T}(t)$$

• Surfaces:

$$P^{x}(u,v) = \boldsymbol{T}(u)^{\mathrm{T}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{G}^{x} \boldsymbol{B} \boldsymbol{T}(v)$$

A separate 4x4 geometry matrix for x, y, z

- $\mathbf{T} =$ power basis
 - **B** = spline matrix
 - $\mathbf{G} =$ geometry matrix

Super Hardcore: Tensor Notation

- You can stack the *G*x, *G*y, *G*z matrices into a geometry **tensor** of control points
 - I.e., Gki,j = the *kth* coordinate of control point Pi,j
 - A cube of numbers!

$$P^{k}(u,v) = \boldsymbol{T}^{l}(u) \boldsymbol{B}_{l}^{i} \boldsymbol{G}_{ij}^{k} \boldsymbol{B}_{m}^{j} \boldsymbol{T}^{m}(v)$$

- "Definitely not required, but nice!
 - See http://en.wikipedia.org/wiki/Multilinear_algebra

Tensor Product B-Spline Patches

Bézier and B-Spline curves are both cubics
 Can change between representations using matrices

- Consequently, you can build tensor product surface patches out of B-Splines just as well
 - Still 4x4 control points for each patch
 - 2D basis functions are pairwise products of B-Spline basis functions
 - Yes, simple!

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 69

Tensor Product Spline Patches

- Pros
 - Smooth
 - Defined by reasonably small set of points
- Cons
 - Harder to render (usually converted to triangles)
 - Tricky to ensure continuity at patch boundaries
- Extensions
 - Rational splines: Splines in homogeneous coordinates
 - NURBS: Non-Uniform Rational B-Splines
 - Like curves: ratio of polynomials, non-uniform location of control points, etc.

Utah Teapot: Tensor Bézier Splines

• Designed by Martin Newell

Image courtesy of Dhatfield on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

6.837 - Durand

Cool: Displacement Mapping

• Not all surfaces are smooth...

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Cool: Displacement Mapping

- Not all surfaces are smooth...
- "Paint" displacements on a smooth surface
 For example, in the direction of normal
- Tessellate smooth patch into fine grid, then add displacement D(u,v) to vertices
- Heavily used in movies, more and more in games

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Displacement Mapping Example

This image is in the public domain. Source: Wikimedia Commons.

Questions?

Subdivision Surfaces

- Start with polygonal mesh
- Subdivide into larger number of polygons, smooth result after each subdivision

- Lots of ways to do this.

• The limit surface is smooth!

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

^{6.837 -} Durand

It turns out corner cutting (Chaikin's Algorithm) produces a quadratic B-Spline curve! (Magic!)

(Well, not totally unexpected, remember de Casteljau)

Subdivision Curves and Surfaces

- Idea: cut corners to smooth
- Add points and compute weighted average of neighbors
- Same for surfaces
 - Special case for irregular vertices
 - vertex with more or less than 6 neighbors in a triangle mesh

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Subdivision Curves and Surfaces

- Advantages
 - Arbitrary topology
 - Smooth at boundaries
 - Level of detail, scalable
 - Simple representation

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Numerical stability, well-behaved meshes
- Code simplicity
- Little disadvantage:
 - Procedural definition
 - Not parametric
 - Tricky at special vertices

Flavors of Subdivision Surfaces

- Catmull-Clark
 - Quads and triangles
 - Generalizes bicubics to arbitrary topology!
- Loop, Butterfly
 - Triangles

- Used everywhere in movie and game modeling!
- See http://www.cs.nyu.edu/~dzorin/sig00course/

Image courtesy of Romainbehar on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Subdivision + Displacement

Original rough mesh

Original mesh with subdivision

Original mesh with subdivision and displacement

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Specialized Procedural Definitions

- Surfaces of revolution
 - Rotate given 2D profile curve
- Generalized cylinders
 - Given 2D profile and
 3D curve, sweep the
 profile along the 3D
 curve
- Assignment 1!

Surface of Revolution

- 2D curve q(u) provides one dimension
 Note: works also with 3D curve
- Rotation R(v) provides 2nd dimension

 $s(u,v) = \mathbf{R}(v)\mathbf{q}(u)$ where \mathbf{R} is a matrix, \mathbf{q} a vector, and s is a point on the surface

General Swept Surfaces

- Trace out surface by moving a profile curve along a trajectory.
 - profile curve $\mathbf{q}(u)$ provides one dim
 - trajectory $\mathbf{c}(u)$ provides the other
- Surface of revolution can be seen as a special case where trajectory is a circle

 $\mathbf{s}(u,v) = \mathbf{M}(\mathbf{c}(v))\mathbf{q}(u)$

where \boldsymbol{M} is a matrix that depends on the trajectory \boldsymbol{c}

General Swept Surfaces

- How do we get **M**?
 - Translation is easy, given by c(v)
 - What about orientation?
- Orientation options:
 - Align profile curve with an axis.
 - Better: Align profile curve with frame that "follows" the curve

s(u,v)=M(c(v))q(u)

where \boldsymbol{M} is a matrix that depends on the trajectory \boldsymbol{c}

Frames on Curves: Frenet Frame

- Frame defined by 1st (tangent), 2nd and 3rd derivatives of a 3D curve
- Looks like a good idea for swept surfaces...

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Frenet: Problem at Inflection!

- Normal flips!
- Bad to define a smooth swept surface

An inflection is a point where curvature changes sign

Smooth Frames on Curves

- Build triplet of vectors
 - include tangent (it is reliable)
 - orthonormal
 - coherent over the curve
- Idea:

- use cross product to create orthogonal vectors
- exploit discretization of curve
- use previous frame to bootstrap orientation
- See Assignment 1 instructions!

Normals for Swept Surfaces

- Need partial derivatives w.r.t. both u and v $n = (\partial S / \partial u) \times (\partial S / \partial v)$ - Remember to normalize!
- One given by tangent of profile curve, the other by tangent of trajectory

 $\mathbf{s}(u,v) = \mathbf{M}(\mathbf{c}(v))\mathbf{q}(u)$

where \boldsymbol{M} is a matrix that depends on the trajectory \boldsymbol{c}

Questions?

Implicit Surfaces

• Surface defined implicitly by a function

Implicit Surfaces

- Pros:
 - Efficient check whether point is inside
 - Efficient Boolean operations
 - Can handle weird topology for animation
 - Easy to do sketchy modeling
- Cons:
 - Does not allow us to easily generate a point on the surface

Image courtesy of Anders Sandberg on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Point Set Surfaces

- Given only a noisy 3D point cloud (no connectivity), can you define a reasonable surface using only the points?
 - Laser range scans only give you points, so this is potentially useful

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

From Point Set Surfaces, (Alexa et al. 2001).

Point Set Surfaces

From <u>Point Set Surfaces</u>, used with permission from ACM, Inc

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/_

Point Set Surfaces

- Modern take on implicit surfaces
- Cool math: Moving Least Squares (MLS), partitions of unity, etc.

• Not required in this class, but nice to know.

Questions?
That's All for Today

Further reading
Buss, Chapters 7 & 8

Subvision curves and surfaces

 http://www.cs.nyu.edu/~dzorin/sig00course/

MIT OpenCourseWare http://ocw.mit.edu

6.837 Computer Graphics Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.