MIT EECS 6.837 Computer Graphics

Implicit Integration Collision Detection

This image is in the public domain. Source: Wikimedia Commons.

MIT EECS 6.837 - Matusik

Philippe Halsman: Dali Atomicus

Midterm

- Tuesday, October 16th 2:30pm 4:00pm
- In class
- Two-pages of notes (double sided) allowed

Plan

- Implementing Particle Systems
- Implicit Integration
- Collision detection and response
 - Point-object and object-object detection
 - Only point-object response

ODEs and Numerical Integration

$$\frac{d \mathbf{X}(t)}{dt} = f(\mathbf{X}(t), t)$$

- Given a function $f(\mathbf{X}, t)$ compute $\mathbf{X}(t)$
- Typically, *initial value problems*:
 - Given values $\mathbf{X}(t_0) = \mathbf{X}_0$
 - Find values $\mathbf{X}(t)$ for $t > t_0$
- We can use lots of standard tools

ODE: Path Through a Vector Field

• *X(t)*: path in multidimensional <u>phase space</u>

Image by MIT OpenCourseWare.

 $\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{X} = f(\boldsymbol{X}, t)$

"When we are at state **X** at time *t*, where will **X** be after an infinitely small time interval d*t*?"

• *f*=d/d*t* **X** is a vector that sits at each point in phase space, pointing the direction.

Many Particles

- We have N point masses
 - Let's just stack all xs and vs in a big vector of length 6N
 - F^i denotes the force on particle *i*
 - When particles do not interact, F^i only depends on x_i and v_i .

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{x}_N \\ \boldsymbol{v}_N \end{pmatrix} \qquad \begin{array}{c} f(\boldsymbol{X}, t) = \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{F}^1(\boldsymbol{X}, t) \\ \vdots \\ \boldsymbol{v}_N \\ \boldsymbol{v}_N \end{pmatrix} \begin{pmatrix} \boldsymbol{\uparrow} \\ \boldsymbol{f} \text{ gives d/dt } \boldsymbol{X}, \\ \boldsymbol{remember!} \end{pmatrix}$$

Implementation Notes

- It pays off to abstract (as usual)
 - It's easy to design your "Particle System" and "Time Stepper" to be unaware of each other
- Basic idea
 - "Particle system" and "Time Stepper" communicate via floating-point vectors X and a function that computes f(X,t)
 - "Time Stepper" does not need to know anything else!

Implementation Notes

- Basic idea
 - "Particle System" tells "Time Stepper" how many dimensions (N) the phase space has
 - "Particle System" has a function to write its state to an N-vector of floating point numbers (and read state from it)
 - "Particle System" has a function that evaluates f(X,t), given a state vector X and time t
 - "Time Stepper" takes a "Particle System" as input and advances its state

Particle System Class

class ParticleSystem

{

virtual int getDimension()
virtual setDimension(int n)
virtual float* getStatePositions()
virtual setStatePositions(float* positions)
virtual float* getStateVelocities()
virtual setStateVelocities(float* velocities)
virtual float* getForces(float* positions, float* velocities)
virtual setMasses(float* masses)
virtual float* getMasses()

float* m_currentState

}

Time Stepper Class

class TimeStepper

```
{
    virtual takeStep(ParticleSystem* ps, float h)
}
```

Forward Euler Implementation

```
class ForwardEuler : TimeStepper
```

{

}

```
void takeStep(ParticleSystem* ps, float h)
{
      velocities = ps->getStateVelocities()
      positions = ps->getStatePositions()
      forces = ps->getForces(positions, velocities)
      masses = ps->getMasses()
      accelerations = forces / masses
      newPositions = positions + h*velocities
      newVelocities = velocities + h*accelerations
      ps->setStatePositions(newPositions)
      ps->setStateVelocities(newVelocities)
}
```

Mid-Point Implementation

class MidPoint : TimeStepper

{

}

```
void takeStep(ParticleSystem* ps, float h)
{
      velocities = ps->getStateVelocities()
      positions = ps->getStatePositions()
      forces = ps->getForces(positions, velocities)
      masses = ps->getMasses()
      accelerations = forces / masses
      midPositions = positions + 0.5*h*velocities
      midVelocities = velocities + 0.5*h*accelerations
      midForces = ps->getForces(midPositions, midVelocities)
      midAccelerations = midForces / masses
      newPositions = positions + 0.5*h*midVelocities
      newVelocities = velocities + 0.5*h*midAccelerations
      ps->setStatePositions(newPositions)
      ps->setStateVelocities(newVelocities)
```

Particle System Simulation

```
ps = new MassSpringSystem(particleCount, masses, springs, externalForces)
stepper = new ForwardEuler()
time = 0
while time < 1000
    stepper->takeStep(ps, 0.0001)
    time = time + 0.0001
```

```
// render
```

Particle System Simulation

```
ps = new MassSpringSystem(particleCount, masses, springs, externalForces)
stepper = new MidPoint()
time = 0
while time < 1000
    stepper->takeStep(ps, 0.0001)
    time = time + 0.0001
```

// render

Computing Forces

- When computing the forces, initialize the force vector to zero, then sum over all forces for each particle
 - Gravity is a constant acceleration
 - Springs connect two particles, affects both
 - $d\mathbf{v}_i/dt = \mathbf{F}^i(\mathbf{X}, t)$ is the vector sum of all forces on particle *i*
 - For 2nd order $\mathbf{F}^{i} = m_{i} \mathbf{a}_{i}$ system, $d\mathbf{x}_{i}/dt$ is just the current \mathbf{v}_{i}

$$f(\boldsymbol{X},t) =$$

$$egin{pmatrix} oldsymbol{v}_1 \ oldsymbol{F}^1(oldsymbol{X},t) \ dots \ oldsymbol{v}_N \ oldsymbol{F}^N(oldsymbol{X},t) \end{pmatrix}$$

Questions?

Image removed due to copyright restrictions.

Euler Has a Speed Limit!

• h > 1/k: oscillate. h > 2/k: explode!

Image removed due to copyright restrictions -- please see slide 5 on "Implicit Methods" from Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

From the SIGGRAPH PBM notes

Integrator Comparison

- Midpoint:
 - − ½ Euler step
 - evaluate f_m
 - full step using f_m
- Trapezoid:
 - Euler step (a)
 - evaluate f_l
 - full step using f_1 (b)
 - average (a) and (b)
- Better than Euler but still a speed limit

Midpoint Speed Limit

- x' = -kx
- First half Euler step: $x_m = x 0.5 hkx = x(1 0.5 hk)$
- Read derivative at x_m : $f_m = -kx_m = -k(1-0.5 hk)x$
- Apply derivative at origin: $x(t+h)=x+hf_m = x-hk(1-0.5hk)x = x(1-hk+0.5h^2k^2)$
- Looks a lot like Taylor...
- We want 0 < x(t+h)/x(t) < 1-hk+0.5 $h^2k^2 < 0$ hk(-1+0.5 hk)<0

For positive values of $h \& k \Rightarrow h < 2/k$

• Twice the speed limit of Euler

Stiffness

- In more complex systems, step size is limited by the largest *k*.
 - One stiff spring can ruin things for everyone else!
- Systems that have some big *k* values are called *stiff systems*.
- In the general case, *k* values are eigenvalues of the local Jacobian!

From the siggraph PBM notes

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Stiffness

Questions?

- In more complex systems, step size is limited by the largest *k*.
 - One stiff spring can ruin things for everyone else!
- Systems that have some big *k* values are called *stiff systems*.
- In the general case, *k* values are eigenvalues of the local Jacobian!

From the siggraph PBM notes

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Explicit Integration

- So far, we have seen explicit Euler -X(t+h) = X(t) + h X'(t)
- We also saw midpoint and trapezoid methods
 - They took small Euler steps, re-evaluated X there, and used some combination of these to step away from the original X(t).
 - Yields higher accuracy, but not impervious to stiffness (twice the speed limit of Euler)

Implicit Integration

- So far, we have seen explicit Euler -X(t+h) = X(t) + h X'(t)
- Implicit Euler uses the derivative at the destination!

$$-X(t+h) = X(t) + h X'(t+h)$$

- It is implicit because we do not have X'(t+h),
 it depends on where we go (HUH?)
- aka backward Euler

Difference with Trapezoid

- Trapezoid
 - take "fake" Euler step
 - read derivative at "fake" destination
- Implicit Euler
 - take derivative at the real destination
 - harder because the derivative depends on the destination and the destination depends on the derivative

Implicit Integration

- Implicit Euler uses the derivative at the destination!
 - -X(t+h) = X(t) + h X'(t+h)
 - It is implicit because we do not have X'(t+h),
 it depends on where we go (HUH?)
 - Two situations
 - *X*' is known analytically and everything is closed form (*doesn't happen in practice*)
 - We need some form of iterative non-linear solver.

- Remember our model problem: x' = -kx
 - Exact solution was a decaying exponential $x_0 e^{-kt}$
- Explicit Euler: x(t+h) = (1-hk) x(t)
 - Here we got the bounds on h to avoid oscillation/explosion

- Remember our model problem: x' = -kx
 - Exact solution was a decaying exponential $x_0 e^{-kt}$
- Explicit Euler: x(t+h) = (1-hk) x(t)
- Implicit Euler: x(t+h) = x(t) + h x'(t+h)

- Remember our model problem: x' = -kx
 - Exact solution was a decaying exponential $x_0 e^{-kt}$
- Explicit Euler: x(t+h) = (1-hk) x(t)
- Implicit Euler: x(t+h) = x(t) + h x'(t+h) x(t+h) = x(t) - hk x(t+h) x(t+h) + hkx(t+h) = x(t) x(t+h) = x(t) / (1+hk)
 - It is a hyperbola!

Implicit Euler is unconditionally stable!

- Explicit Euler: x(t+h) = (1-hk) x(t)
- Implicit Euler: x(t+h) = x(t) + h x'(t+h) x(t+h) = x(t) - h k x(t+h) = x(t) / (1+hk)- It is a hyperbola! 1/(1+hk) < 1, when h,k > 0

Implicit vs. Explicit

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

From the Siggraph PBM notes 30

Implicit vs. Explicit

Questions?

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

From the Siggraph PBM notes 31

Implicit Euler, Visually

 $X_{i+1} = X_i + h f(X_{i+1}, t+h)$ $X_{i+1} - h f(X_{i+1}, t+h) = X_i$

Implicit Euler, Visually

$$X_{i+1} = X_i + h f(X_{i+1}, t+h)$$

$$X_{i+1} - h f(X_{i+1}, t+h) = X_i$$

What is the location $X_{i+1} = X(t+h)$ such that the derivative there, multiplied by -h, points back to $X_i = X(t)$ where we are starting from?

Implicit Euler in 1D

- To simplify, consider only 1D time-invariant systems
 This means x' = f(x,t) = f(x) is independent of t
 - Our spring equations satisfy this already
- x(t+h) = x(t) + dx = x(t) + h f(x(t+h))
- f can be approximated it by 1st order Taylor: $f(x+dx)=f(x)+dxf'(x)+O(dx^2)$
- x(t+h) = x(t) + h [f(x) + dx f'(x)]
- dx=h[f(x)+dxf'(x)]
- dx = hf(x)/[1-hf'(x)]
- Pretty much Newton solution

Newton's Method (1D)

• Iterative method for solving non-linear equations

$$f(x) = 0$$

• Start from initial guess x_0 , then iterate

Newton's Method (1D)

• Iterative method for solving non-linear equations

$$f(x) = 0$$

• Start from initial guess x_0 , then iterate

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

• Also called Newton-Raphson iteration
Newton's Method (1D)

• Iterative method for solving non-linear equations

$$f(x) = 0$$

• Start from initial guess x_0 , then iterate

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$\Leftrightarrow f'(x_i)(x_{i+1} - x_i) = -f(x_i)$$

one step

This image is in the public domain. Source: Wikimedia Commons.

This image is in the public domain. Source: Wikimedia Commons.

Wikipedia users Olegalexandrov, Pbroks13

This image is in the public domain. Source: Wikimedia Commons.

Wikipedia users Olegalexandrov, Pbroks13

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Implicit Euler and Large Systems

- To simplify, consider only time-invariant systems
 This means X' = f(X,t) = f(X) is independent of t
 - $\int (2\mathbf{x}, t) \int (2\mathbf{x}, t) \int (2\mathbf{x}) dt = 1$
 - Our spring equations satisfy this already
- Implicit Euler with *N*-*D* phase space: $X_{i+1} = X_i + h f(X_{i+1})$

Implicit Euler and Large Systems

- To simplify, consider only time-invariant systems
 This means X' = f(X,t) = f(X) is independent of t
 - Our spring equations satisfy this already
- Implicit Euler with *N*-*D* phase space: $X_{i+1} = X_i + h f(X_{i+1})$
- Non-linear equation, unknown X_{i+1} on both the LHS and the RHS

Newton's Method – N Dimensions

• 1D:
$$f'(x_i)(x_{i+1} - x_i) = -f(x_i)$$

- Now locations X_i , X_{i+1} and F are N-D
- N-D Newton step is just like 1D:

$$J_F(\boldsymbol{X}_i)(\boldsymbol{X}_{i+1} - \boldsymbol{X}_i) = -F(\boldsymbol{X}_i)$$

NxN Jacobian unknown N-D matrix replaces step from f' current to next guess

Newton's Method – N Dimensions

- Now locations X_i , X_{i+1} and F are N-D
- Newton solution of $F(X_{i+1}) = 0$ is just like 1D:

$$J_F(\boldsymbol{X}_i)(\boldsymbol{X}_{i+1} - \boldsymbol{X}_i) = -F(\boldsymbol{X}_i)$$

NxN Jacobian unknown N-D matrix step from current to next guess $J_F(\mathbf{X}_i) = \begin{bmatrix} \frac{\partial F}{\partial X} \end{bmatrix}_{\mathbf{X}_i}$

- Must solve a linear system at each step of Newton iteration
 - Note that also Jacobian changes for each step

Newton's Method – N Dimensions

- Now locations X_i , X_{i+1} and F are N-D
- Newton solution of $F(X_{i+1}) = 0$ is just like 1D:

$$J_F(\boldsymbol{X}_i)(\boldsymbol{X}_{i+1} - \boldsymbol{X}_i) = -F(\boldsymbol{X}_i)$$

NxN Jacobian unknown N-D matrix step from current to next guess

$$J_F(\boldsymbol{X}_i) = \left[\frac{\partial F}{\partial X}\right]_{\boldsymbol{X}_i}$$

- Must solve a linear system at each step of Newton iteration
- **Questions?**
- Note that also Jacobian changes for each step

Implicit Euler – N Dimensions

- Implicit Euler with *N*-*D* phase space: $X_{i+1} = X_i + h f(X_{i+1})$
- Let's rewrite this as F(Y) = 0, with

$$F(\boldsymbol{Y}) = \boldsymbol{Y} - \boldsymbol{X}_i - hf(\boldsymbol{Y})$$

Implicit Euler – N Dimensions

- Implicit Euler with *N*-*D* phase space: $X_{i+1} = X_i + h f(X_{i+1})$
- Let's rewrite this as F(Y) = 0, with

$$F(\boldsymbol{Y}) = \boldsymbol{Y} - \boldsymbol{X}_i - hf(\boldsymbol{Y})$$

• Then the *Y* that solves F(Y) = 0 is X_{i+1}

Implicit Euler – N Dimensions

$$F(\mathbf{Y}) = \mathbf{Y} - \mathbf{X}_i - hf(\mathbf{Y})$$

Y is variable X_i is fixed

• Then iterate

– Initial guess $oldsymbol{Y}_0 = oldsymbol{X}_i$ (or result of explicit method)

– For each step, solve
$$\, J_F({old Y}_i) \Delta {old Y} = -F({old Y}_i)$$

– Then set
$$oldsymbol{Y}_{i+1} = oldsymbol{Y}_i + \Delta oldsymbol{Y}$$

What is the Jacobian?

$$F(\mathbf{Y}) = \mathbf{Y} - \mathbf{X}_i - hf(\mathbf{Y})$$

• Simple partial differentiation...

$$J_F(\mathbf{Y}) = \left[\frac{\partial F}{\partial \mathbf{Y}}\right] = \mathbf{I} - hJ_f(\mathbf{Y})$$

• Where
$$J_f(Y) = \begin{bmatrix} \frac{\partial f}{\partial Y} \end{bmatrix}$$
 The Jacobian of the Force function f

Putting It All Together

• Iterate until convergence

– Initial guess $oldsymbol{Y}_0 = oldsymbol{X}_i$ (or result of explicit method)

- For each step, solve $\left(\boldsymbol{I} - h J_f(\boldsymbol{Y}_i)\right) \Delta \boldsymbol{Y} = -F(\boldsymbol{Y}_i)$

– Then set $oldsymbol{Y}_{i+1} = oldsymbol{Y}_i + \Delta oldsymbol{Y}$

Implicit Euler with Newton, Visually

Implicit Euler with Newton, Visually

What is the location $X_{i+1}=X(t+h)$ such that the derivative there, multiplied by -*h*, **points back** to $X_i=X(t)$ where we are starting from?

Image by MIT OpenCourseWare.

One-Step Cheat

- Often, the 1st Newton step may suffice
 - People often implement Implicit Euler using only one step.
 - This amounts to solving the system

$$\left(I - h\frac{\partial f}{\partial X}\right)\Delta X = hf(X)$$

where the Jacobian and f are evaluated at X_i , and we are using X_i as an initial guess.

One-Step Cheat

- Often, the 1st Newton step may suffice
 - People often implement Implicit Euler using only one step.
 - This amounts to solving the system

$$\left(I - h\frac{\partial f}{\partial X}\right)\Delta X = hf(X)$$

where the Jacobian and f are evaluated at X_i , and we are using X_i as an initial guess.

Good News

- The Jacobian matrix J_f is usually sparse
 - Only few non-zero entries per row
 - E.g. the derivative of a spring force only depends on the adjacent masses' positions
- Makes the system cheaper to solve
 - Don't invert the Jacobian!
 - Use iterative matrix solvers like conjugate gradient, perhaps with preconditioning, etc.

$$(\boldsymbol{I} - J_f(\boldsymbol{Y}_i))\Delta \boldsymbol{Y} = -F(\boldsymbol{Y}_i)$$

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Implicit Euler Pros & Cons

- Pro: Stability!
- Cons:
 - Need to solve a linear system at each step
 - Stability comes at the cost of "numerical viscosity", but then again, you do not have to worry about explosions.
 - Recall exp vs. hyperbola
- Note that accuracy is not improved
 - error still O(h)
 - There are lots and lots of implicit methods out there!

Reference

- Large steps in cloth simulation
- David Baraff Andrew Witkin
- http://portal.acm.org/citation.cfm?id=280821

Figure 5 (top row): Dancer with short skirt; frames 110, 136 and 155. Figure 6 (middle row): Dancer with long skirt; frames 185, 215 and 236. Figure 7 (bottom row): Closeups from figures 4 and 6.

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

A Mass Spring Model for Hair Simulation

Selle, A., Lentine, M., G., and Fedkiw

Animation removed due to copyright restrictions.

Simulating Knitted Cloth at the Yarn Level

Jonathan Kaldor, Doug L. James, and Steve Marschner

Animation removed due to copyright restrictions.

Efficient Simulation of Inextensible Cloth

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, Eitan Grinspun

Animation removed due to copyright restrictions.

Questions?

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Detecting Collisions

- Easy with implicit equations of surfaces:
 - H(x,y,z) = 0 on the surface H(x,y,z) < 0 inside surface
- So just compute *H* and you know that you are inside if it is negative
- More complex with other surface definitions like meshes
 - A mesh is not necessarily even closed, what is inside?

Collision Response for Particles

Collision Response for Particles

 $V = V_n + V_t$

normal component tangential component

Collision Response for Particles

- Tangential velocity v_t often unchanged
- Normal velocity v_n reflects:

$$v = v_t + v_n$$

$$v \leftarrow v_t - \mathcal{E}v_n$$

- Coefficient of restitution ε
- When $\varepsilon = 1$, mirror reflection

Collisions – Overshooting

• Usually, we detect collision when it is too late: we are already inside

Collisions – Overshooting

- Usually, we detect collision when it is too late: we are already inside
- Solution: Back up
 - Compute intersection point
 - Ray-object intersection!
 - Compute response there
 - Advance for remaining fractional time step

Collisions – Overshooting

- Usually, we detect collision when it is too late: we are already inside
- Solution: Back up
 - Compute intersection point
 - Ray-object intersection!
 - Compute response there
 - Advance for remaining fractional time step
- Other solution: Quick and dirty hack
 - Just project back to object closest point

Questions?

- Pong: *ε* =?
- http://www.youtube.com/watch?v=sWY0Q_lMFfw
- http://www.xnet.se/javaTest/jPong/jPong.html

This image is in the public domain. Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/Pong

Animation removed due to copyright restrictions.

Image courtesy of Chris Rand on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Collision Detection in Big Scenes

- Imagine we have *n* objects. Can we test all pairwise intersections?
 - Quadratic cost $O(n^2)$!
- Simple optimization: separate static objects
 But still O(static × dynamic+ dynamic²)

Hierarchical Collision Detection

- Use simpler conservative proxies (e.g. bounding spheres)
- Recursive (hierarchical) test
 Spend time only for parts of the scene that are close
- Many different versions, we will cover only one

Bounding Spheres

- Place spheres around objects
- If spheres do not intersect, neither do the objects!
- Sphere-sphere collision test is easy.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

Courtesy of Patrick Laug. Used with permission.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Sphere-Sphere Collision Test

- Two spheres, centers C_1 and C_2 , radii r_1 and r_2
- Intersect only if $||C_1C_2|| < r_1 + r_2$

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

Hierarchical Collision Test

- Hierarchy of bounding spheres
 Organized in a tree
- Recursive test with early pruning

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Examples of Hierarchy

• http://isg.cs.tcd.ie/spheretree/

© Gareth Bradshaw. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Pseudocode (simplistic version)

boolean intersect(node1, node2)

```
// no overlap? ==> no intersection!
```

```
if (!overlap(node1->sphere, node2->sphere)
return false
```

// recurse down the larger of the two nodes

```
if (node1->radius()>node2->radius())
for each child c of node1
    if intersect(c, node2) return true
else
for each child c f node2
    if intersect(c, node1) return true
```

// no intersection in the subtrees? ==> no intersection!
return false

if (!overlap(node1->sphere, node2->sphere)

return false

if (node1->radius()>node2->radius())

for each child c of node1

if intersect(c, node2) return true

else

for each child c f node2

```
if intersect(c, node1) return true
```

return false

node 1

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

if (!overlap(node1->sphere, node2->sphere)

return false

if (node1->radius()>node2->radius())

for each child c of node1

if intersect(c, node2) return true

else

for each child c f node2

if intersect(c, node1) return true

return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

if (!overlap(node1->sphere, node2->sphere)

return false

if (node1->radius()>node2->radius())

for each child c of node1

if intersect(c, node2) return true

else

for each child c f node2

if intersect(c, node1) return true

return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

if (!overlap(node1->sphere, node2->sphere)

return false

if (node1->radius()>node2->radius())

for each child c of node1

if intersect(c, node2) return true

else

for each child c f node2

if intersect(c, node1) return true

return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

if (!overlap(node1->sphere, node2->sphere)

return false

if (node1->radius()>node2->radius())

for each child c of node1

if intersect(c, node2) return true

else

for each child c f node2

if intersect(c, node1) return true

return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

if (!overlap(node1->sphere, node2->sphere)

return false

if (node1->radius()>node2->radius())

for each child c of node1

if intersect(c, node2) return true

else

for each child c f node2

if intersect(c, node1) return true

return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Pseudocode (with leaf case)

boolean intersect(node1, node2)

```
if (!overlap(node1->sphere, node2->sphere)
return false
```

// if there is nowhere to go, test everything

if (node1->isLeaf() && node2->isLeaf())
 perform full test between all primitives within nodes

// otherwise go down the tree in the non-leaf path

```
if ( !node2->isLeaf() && !node1->isLeaf() )
```

// pick the larger node to subdivide, then recurse

else

// recurse down the node that is not a leaf

return false

88

Other Options

- Axis Aligned Bounding Boxes
 "R-Trees"
- Oriented bounding boxes
 - S. Gottschalk, M. Lin, and D. Manocha. "OBBTree: A hierarchical Structure for rapid interference detection," Proc. Siggraph 96. ACM Press, 1996
- Binary space partitioning trees; kd-trees

- http://www.youtube.com/watch?v=b_cGXtc-nMg
- http://www.youtube.com/watch?v=nFd9BIcpHX4&f eature=related
- http://www.youtube.com/watch?v=2SXixK7yCGU

Hierarchy Construction

- Top down
 - Divide and conquer
- Bottom up
 - Cluster nearby objects
- Incremental
 - Add objects one by one, binary-tree style.

Bounding Sphere of a Set of Points

• Trivial given center C- radius = max_i ||C- P_i ||

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Bounding Sphere of a Set of Points

- Using axis-aligned bounding box
 - center=
 - $((x_{min}+x_{max})/2, (y_{min}+y_{max})/2, (z_{min}, z_{max})/2)$
 - Better than the average of the vertices because does not suffer from non-uniform tessellation

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Bounding Sphere of a Set of Points

- Using axis-aligned bounding box
 - center=

 $((x_{min}+x_{max})/2, (y_{min}+y_{max})/2, (z_{min}, z_{max})/2)$

 Better than the average of the vertices because does not suffer from non-uniform tessellation

Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Questions?

Top-Down Construction

- Take longest scene dimension
- Cut in two in the middle
 - assign each object or triangle to one side
 - build sphere around it

Top-Down Construction - Recurse

- Take longest scene dimension
- Cut in two in the middle
 - assign each object or triangle to one side
 - build sphere/box around it

see http://ocw.mit.edu/help/faq-fair-use/.

This image is in the public domain. Source: Wikimedia Commons.

Top-Down Construction - Recurse

- Take longest scene dimension
- Cut in two in the middle
 - **Questions?** - assign each object or triangle to one side
 - build sphere/box around it

This image is in the public domain. Source: Wikimedia Commons.

> excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Reference

An image of the book, "Real Time Collision Detection" by Christer Ericson, has been removed due to copyright restrictions.

The Cloth Collision Problem

- A cloth has many points of contact
- Stays in contact
- Requires
 - Efficient collision detection

- Efficient numerical treatment (stability)

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Robust Treatment of Simultaneous Collisions David Harmon, Etienne Vouga, Rasmus Tamstorf, Eitan Grinspun

Animation removed due to copyright restrictions.

How Do They Animate Movies?

- Keyframing mostly
- Articulated figures, inverse kinematics
- Skinning
 - Complex deformable skin, muscle, skin motion
- Hierarchical controls
 - Smile control, eye blinking, etc.
 - Keyframes for these higher-level controls
- A huge time is spent building the 3D models, its skeleton and its controls (rigging)
- Physical simulation for secondary motion
 - Hair, cloths, water
 - Particle systems for "fuzzy" objects

© Maya tutorial. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

That's All for Today!

Image removed due to copyright restrictions.

MIT OpenCourseWare http://ocw.mit.edu

6.837 Computer Graphics Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.