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Stopping criteria: 
• Recursion depth 

– Stop after a 
number  
of bounces 

• Ray contribution 
– Stop if reflected /  

transmitted 
contribution  
becomes too small 

trace ray 

   Intersect all objects 

   color = ambient term 

   For every light 

      cast shadow ray  

      color += local shading term 

   If mirror 

      color += colorrefl *  

                trace reflected ray 

   If transparent 

      color += colortrans *  

               trace transmitted ray 

 

•   Does it ever end? 

Recap: Ray Tracing 
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Recursion For Reflection: None 

0 recursion 



Recursion For Reflection: 1 

0 recursion 
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Recursion For Reflection: 2 

0 recursion 
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Ray tree 

• Visualizing the ray tree for single image pixel 

incoming 
reflected ray 
shadow ray 
transmitted (refracted) ray 
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Ray tree 

• Visualizing the ray tree for single image pixel 

incoming 
reflected ray 
shadow ray 
transmitted (refracted) ray 

This gets pretty complicated 
pretty fast! 
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Questions? 
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Ray Tracing Algorithm Analysis 
• Lots of primitives 
• Recursive 
• Distributed Ray 

Tracing 
– Means using many 

rays for non-
ideal/non-pointlike 
phenomena  

• Soft shadows 
• Anti-aliasing 
• Glossy reflection 
• Motion blur 
• Depth of field 

cost  ≈   height * width *  
              num primitives *  
              intersection cost *  
              size of recursive ray tree *  
         num shadow rays * 
         num supersamples * 
              num glossy rays *               
              num temporal samples * 
              num aperture samples * 
              . . . 

Can we reduce this? 
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• Motivation 
– You need LOTS of rays to generate nice pictures 
– Intersecting every ray with every primitive becomes the 

bottleneck 
• Bounding volumes 
• Bounding Volume Hierarchies, Kd-trees 

For every pixel  

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 

     Shade 

Today 
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Accelerating Ray Casting 
• Goal: Reduce the number 

of ray/primitive 
intersections 
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Conservative Bounding Volume 
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• First check for an 
intersection with a 
conservative  
bounding volume 

• Early reject: If ray 
doesn’t hit volume, 
it doesn’t hit the 
triangles! 



Conservative Bounding Volume 
• What does 

“conservative” mean? 
– Volume must be big 

enough to contain all 
geometry within 
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Conservative Bounding Regions 
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• Desiderata 
– Tight → 

avoid false positives 
– Fast to intersect 



Ray-Box Intersection 

• Axis-aligned box 
• Box:   (X1, Y1, Z1) → (X2, Y2, Z2) 
• Ray:    P(t) = Ro + tRd 

y=Y2 

y=Y1 

x=X1 x=X2 

Ro 

Rd 
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Naïve Ray-Box Intersection 

• 6 plane equations: Compute all intersections 
• Return closest intersection inside the box 

– Verify intersections are on the correct side  
of each plane: Ax+By+Cz+D < 0  

y=Y2 

y=Y1 

x=X1 x=X2 

Ro 

Rd 
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Reducing Total Computation 

• Pairs of planes have the same normal 
• Normals have only one non-zero component 
• Do computations one dimension at a time 

y=Y2 

y=Y1 

x=X1 x=X2 

Ro 

Rd 
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Test if Parallel 

• If Rdx = 0  (ray is parallel)   AND 
    Rox < X1 or Rox > X2  →  no intersection 

y=Y2 

y=Y1 

x=X1 x=X2 

Ro 

Rd (The same 

for Y and Z, 

of course) 
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Find Intersections Per Dimension 
• Basic idea 

– Determine an interval along the ray for each dimension 
– The intersect these 1D intervals (remember CSG!) 
– Done! 

Ro 

y=Y2 

y=Y1 

x=X1 x=X2 
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Find Intersections Per Dimension 
• Basic idea 

– Determine an interval along the ray for each dimension 
– The intersect these 1D intervals (remember CSG!) 
– Done! 

Ro 

y=Y2 

y=Y1 

x=X1 x=X2 

Interval 

between X1 

and X2 
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Find Intersections Per Dimension 
• Basic idea 

– Determine an interval along the ray for each dimension 
– The intersect these 1D intervals (remember CSG!) 
– Done! 

Ro 

y=Y2 

y=Y1 

x=X1 x=X2 

Interval 

between X1 

and X2 

Interval 

between Y1 

and Y2 
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Find Intersections Per Dimension 
• Basic idea 

– Determine an interval along the ray for each dimension 
– The intersect these 1D intervals (remember CSG!) 
– Done! 

Ro 

y=Y2 

y=Y1 

x=X1 x=X2 

Interval 

between X1 

and X2 

Interval 

between Y1 

and Y2 

Intersection 
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Intersecting 1D Intervals 
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Intersecting 1D Intervals 

Start= 
max of mins 
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Intersecting 1D Intervals 

Start= 
max of mins 

End= 
min of maxs 
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Intersecting 1D Intervals 

Start= 
max of mins 

End= 
min of maxs 

If Start > End, the intersection is empty! 
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Find Intersections Per Dimension 
• Calculate intersection distance t1 and t2 

t1 

t2 

Ro 

Rd 

y=Y2 

y=Y1 

x=X1 x=X2 
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Find Intersections Per Dimension 
• Calculate intersection distance t1 and t2 

– t1 = (X1 - Rox) / Rdx 

– t2 = (X2 - Rox) / Rdx 

– [t1, t2] is the X interval 

t1 

t2 

Ro 

Rd 

y=Y2 

y=Y1 

x=X1 x=X2 
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Then Intersect Intervals 
• Init tstart & tend with X interval 
• Update tstart & tend for each subsequent dimension 

y=Y2 

y=Y1 

x=X1 x=X2 

tend 
tstart 
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Then Intersect Intervals 
• Compute t1 and t2 for Y... 

t1 

t2 

y=Y2 

y=Y1 

x=X1 x=X2 
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Then Intersect Intervals 
• Update tstart & tend for each subsequent dimension 

– If t1 > tstart,  tstart = t1 

– If t2 < tend,    tend    = t2 

y=Y2 

y=Y1 

x=X1 x=X2 

t1 

t2 tend 
tstart 
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Then Intersect Intervals 
• Update tstart & tend for each subsequent dimension 

– If t1 > tstart,  tstart = t1 

– If t2 < tend,    tend    = t2 

tend y=Y2 

y=Y1 

x=X1 x=X2 

tstart 

t1 

t2 
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Then Intersect Intervals 
• Update tstart & tend for each subsequent dimension 

– If t1 > tstart,  tstart = t1 

– If t2 < tend,    tend    = t2 

y=Y2 

y=Y1 

x=X1 x=X2 

tend 
tstart 

:-) 
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Is there an Intersection? 
• If tstart > tend → box is missed 

y=Y2 

y=Y1 

x=X1 x=X2 

tend 

tstart 
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Is the Box Behind the Eyepoint? 
• If tend <  tmin   → box is behind 

y=Y2 

y=Y1 

x=X1 x=X2 

tend 

tstart 
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Return the Correct Intersection 
• If tstart  >  tmin  → closest intersection at tstart 

• Else                      → closest intersection at tend 

– Eye is inside box 

y=Y2 

y=Y1 

x=X1 x=X2 

tend 

tstart 
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Ray-Box Intersection Summary 
• For each dimension,  

– If Rdx = 0  (ray is parallel)  AND   
    Rox < X1 or Rox > X2  →  no intersection 

• For each dimension, calculate intersection distances t1 and t2 
– t1 = (X1 - Rox) / Rdx                         t2 = (X2 - Rox) / Rdx 
– If t1 > t2,   swap 
– Maintain an interval [tstart, tend], intersect with current 

dimension 
– If t1 > tstart,  tstart = t1               If t2 < tend,    tend    = t2 

• If tstart > tend    → box is missed 

• If tend < tmin    → box is behind 

• If tstart  >  tmin  → closest intersection at tstart 

• Else                      → closest intersection at tend 
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Efficiency Issues 

• 1/Rdx, 1/Rdy and 1/Rdz can be pre-computed  
and shared for many boxes 
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Bounding Box of a Triangle 

(xmin, ymin, zmin) 

(xmax, ymax, zmax) 
(x

0
, y

0
, z

0
) 

(x
1
, y

1
, z

1
) 

(x
2
, y

2
, z

2
) 

= (min(x0,x1,x2),  
     min(y0,y1,y2),  
     min(z0,z1,z2)) 

= (max(x0,x1,x2), 
     max(y0,y1,y2), 
     max(z0,z1,z2)) 
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Bounding Box of a Sphere 

r 

(xmin, ymin, zmin) 

(xmax, ymax, zmax) 

(x, y, z) 

= (x-r,  y-r,  z-r) 

= (x+r,  y+r,  z+r) 
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Bounding Box of a Plane 

(xmin, ymin, zmin) 

(xmax, ymax, zmax) 

= (-∞, -∞, -∞)* 

= (+∞, +∞, +∞)* 

n = (a, b, c) 

ax + by + cz = d 

* unless n is exactly perpendicular to an axis 
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Bounding Box of a Group 

(x
min_b

, y
min_b

, z
min_b

) 

(xmin, ymin, zmin) 

(xmax, ymax, zmax) 

= (min(xmin_a,xmin_b),  

     min(ymin_a,ymin_b),  

     min(zmin_a,zmin_b)) 

= (max(xmax_a,xmax_b),  

     max(ymax_a,ymax_b),  

     max(zmax_a,zmax_b)) 

(x
min_a

, y
min_a

, z
min_a

) 

(x
max_b

, y
max_b

, z
max_b

) 

(x
max_a

, y
max_a

, z
max_a

) 
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Bounding Box of a Transform 

(x'min, y'min, z'min) 

(x'max, y'max, z'max) 

= (min(x0,x1,x2,x3,x4,x5,x6,x7),  
     min(y0,y1,y2,y3,y4,x5,x6,x7),  
     min(z0,z1,z2,z3,z4,x5,x6,x7)) 

M 

(xmin, ymin, zmin) 
(x0,y0,z0) =  
M (xmin,ymin,zmin) 

= (max(x0,x1,x2,x3,x4,x5,x6,x7),  
     max(y0,y1,y2,y3,y4,x5,x6,x7),  
     max(z0,z1,z2,z3,z4,x5,x6,x7)) 

(x1,y1,z1) =  
M (xmax,ymin,zmin) 

(x2,y2,z2) =  
M (xmin,ymax,zmin) 

(x3,y3,z3) =   
M (xmax,ymax,zmin) 

(xmax, ymax, zmax) 

Bounding box of transformed object IS NOT 

the transformation of the bounding box! 
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Bounding Box of a Transform 

(x'min, y'min, z'min) 

(x'max, y'max, z'max) 

= (min(x0,x1,x2,x3,x4,x5,x6,x7),  
     min(y0,y1,y2,y3,y4,x5,x6,x7),  
     min(z0,z1,z2,z3,z4,x5,x6,x7)) 

M 

(xmin, ymin, zmin) 
(x0,y0,z0) =  
M (xmin,ymin,zmin) 

= (max(x0,x1,x2,x3,x4,x5,x6,x7),  
     max(y0,y1,y2,y3,y4,x5,x6,x7),  
     max(z0,z1,z2,z3,z4,x5,x6,x7)) 

(x1,y1,z1) =  
M (xmax,ymin,zmin) 

(x2,y2,z2) =  
M (xmin,ymax,zmin) 

(x3,y3,z3) =   
M (xmax,ymax,zmin) 

(xmax, ymax, zmax) 

Bounding box of transformed object IS NOT 

the transformation of the bounding box! 
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Questions? 



Are Bounding Volumes Enough? 

• If ray hits bounding volume, 
must we test all primitives inside it? 
– Lots of work, think of a 1M-triangle mesh 

bounding 

sphere 
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Bounding Volume Hierarchies 

• If ray hits bounding volume, 
must we test all primitives inside it? 
– Lots of work, think of a 1M-triangle mesh 

• You guessed it already, we’ll split the primitives in 
groups and build recursive bounding volumes 
– Like collision detection, 

remember? 
bounding 

sphere 

hierarchy 

46 



Bounding Volume Hierarchy (BVH) 
• Find bounding box of objects/primitives 
• Split objects/primitives into two, compute child BVs 
• Recurse, build a binary tree 
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• Find bounding box of objects/primitives 
• Split objects/primitives into two, compute child BVs 
• Recurse, build a binary tree 

Bounding Volume Hierarchy (BVH) 
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• Find bounding box of objects/primitives 
• Split objects/primitives into two, compute child BVs 
• Recurse, build a binary tree 

Bounding Volume Hierarchy (BVH) 
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• Find bounding box of objects/primitives 
• Split objects/primitives into two, compute child BVs 
• Recurse, build a binary tree 

Bounding Volume Hierarchy (BVH) 
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• Find bounding box of objects/primitives 
• Split objects/primitives into two, compute child BVs 
• Recurse, build a binary tree 

Bounding Volume Hierarchy (BVH) 
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Where to Split Objects? 
• At midpoint of current volume    OR 

• Sort, and put half of the objects on each side    OR 

• Use modeling hierarchy 
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Where to Split Objects? 
• At midpoint of current volume    OR 

• Sort, and put half of the objects on each side    OR 

• Use modeling hierarchy 

53 Questions? 



Ray-BVH Intersection 
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Ray-BVH Intersection 
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Ray-BVH Intersection 
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Intersection with BVH 
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Intersection with BVH 
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Intersection with BVH 
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BVH Discussion 

• Advantages 
– easy to construct 
– easy to traverse 
– binary tree (=simple structure) 

 
• Disadvantages 

– may be difficult to choose a good split for a node 
– poor split may result in minimal spatial pruning 
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BVH Discussion 

• Advantages 
– easy to construct 
– easy to traverse 
– binary tree (=simple structure) 

 
• Disadvantages 

– may be difficult to choose a good split for a node 
– poor split may result in minimal spatial pruning 

 
• Still one of the best methods 

– Recommended for your first hierarchy! 
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BVH Discussion 

• Advantages 
– easy to construct 
– easy to traverse 
– binary tree (=simple structure) 

 
• Disadvantages 

– may be difficult to choose a good split for a node 
– poor split may result in minimal spatial pruning 

 
• Still one of the best methods 

– Recommended for your first hierarchy! 
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Questions? 



Kd-trees 

• Probably most popular acceleration structure  
• Binary tree, axis-aligned splits 

– Each node splits space in half along an axis-aligned plane 
• A space partition: The nodes do not overlap! 

– This is in contrast to BVHs 
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Data Structure 
KdTreeNode: 

KdTreeNode* backNode, frontNode //children 

int dimSplit // either x, y or z 

float splitDistance  

// from origin along split axis 

boolean isLeaf 

List of triangles //only for leaves 

 

here dimSplit = 0 (x axis) backNode frontNode 

X=splitDistance 
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Kd-tree Construction 

• Start with scene axis-aligned bounding box 
• Decide which dimension to split (e.g. longest) 
• Decide at which distance to split (not so easy) 
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Kd-tree Construction - Split 

• Distribute primitives to each side 
• If a primitive overlaps split plane, assign to both 

sides 
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Kd-tree Construction - Recurse 

• Stop when minimum number of primitives reached 
• Other stopping criteria possible 
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Questions? 

• Further reading on efficient Kd-tree construction 
– Hunt, Mark & Stoll, IRT 2006 
– Zhou et al., SIGGRAPH Asia 2008 Zhou et al. 
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Kd-tree Traversal - High Level 

• If leaf, intersect with list of primitives 
• If intersects back child, recurse 
• If intersects front child, recurse 
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Kd-tree Traversal, Naïve Version 

• Could use bounding box test for each child 
• But redundant calculation: bbox similar to that of 

parent node, plus axis aligned, one single split 
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Kd-tree Traversal, Smarter Version 

• Get main bbox intersection from parent  
– tnear, tfar 

• Intersect with splitting plane  
– easy because axis aligned 

tnear 

tfar 

t 
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Kd-tree Traversal - Three Cases 

• Intersects only back, only front, or both 
• Can be tested by examining t, tstart and tend 
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Kd-tree traversal - three cases 

• If t>tend => intersect only front 
• If t<tstart => intersect only back 

Note: “Back” and 

“Front” depend on 

ray direction! 
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Kd-tree Traversal Pseudocode 
travers(orig, dir, t_start, t_end): 

#adapted from Ingo Wald’s thesis 

#assumes that dir[self.dimSplit] >0 

if self.isLeaf:  

return intersect(self.listOfTriangles, orig, dir, t_start, t_end) 

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];  

if t <= t_start:   

# case one, t <= t_start <= t_end -> cull front side  

return self.backSideNode.traverse(orig, dir,t_start,t_end)  

elif t >= t_end:  

# case two, t_start <= t_end <= t -> cull back side  

return self.frontSideNode.traverse(orig, dir,t_start,t_end)  

else: 

# case three: traverse both sides in turn  

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)  

if t_hit <= t: return t_hit; # early ray termination  

return self.backSideNode.traverse(orig, dir, t, t_end) 
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Important! 
travers(orig, dir, t_start, t_end): 

#adapted from Ingo Wald’s thesis 

#assumes that dir[self.dimSplit] >0 

if self.isLeaf:  

return intersect(self.listOfTriangles, orig, dir, t_start, t_end) 

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];  

if t <= t_start:   

# case one, t <= t_start <= t_end -> cull front side  

return self.backSideNode.traverse(orig, dir,t_start,t_end)  

elif t >= t_end:  

# case two, t_start <= t_end <= t -> cull back side  

return self.frontSideNode.traverse(orig, dir,t_start,t_end)  

else: 

# case three: traverse both sides in turn  

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)  

if t_hit <= t: return t_hit; # early ray termination  

return self.backSideNode.traverse(orig, dir, t, t_end) 
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Early termination is powerful! 
travers(orig, dir, t_start, t_end): 

#adapted from Ingo Wald’s thesis 

#assumes that dir[self.dimSplit] >0 

if self.isLeaf:  

return intersect(self.listOfTriangles, orig, dir, t_start, t_end) 

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];  

if t <= t_start:   

# case one, t <= t_start <= t_end -> cull front side  

return self.backSideNode.traverse(orig, dir,t_start,t_end)  

elif t >= t_end:  

# case two, t_start <= t_end <= t -> cull back side  

return self.frontSideNode.traverse(orig, dir,t_start,t_end)  

else: 

# case three: traverse both sides in turn  

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)  

if t_hit <= t: return t_hit; # early ray termination  

return self.backSideNode.traverse(orig, dir, t, t_end) 
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Early termination is powerful 

• If there is an intersection in the first node, don’t visit 
the second one 

• Allows ray casting to be reasonably independent of 
scene depth complexity 
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Recap: Two main gains 

• Only intersect with triangles “near” the line 
• Stop at the first intersection 
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Two main gains 
travers(orig, dir, t_start, t_end): 

#adapted from Ingo Wald’s thesis 

#assumes that dir[self.dimSplit] >0 

if self.isLeaf:  

return intersect(self.listOfTriangles, orig, dir, t_start, t_end) 

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];  

if t <= t_start:   

# case one, t <= t_start <= t_end -> cull front side  

return self.backSideNode.traverse(orig, dir,t_start,t_end)  

elif t >= t_end:  

# case two, t_start <= t_end <= t -> cull back side  

return self.frontSideNode.traverse(orig, dir,t_start,t_end)  

else: 

# case three: traverse both sides in turn  

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)  

if t_hit <= t: return t_hit; # early ray termination  

return self.backSideNode.traverse(orig, dir, t, t_end) 

 

Only near line 

stop at first intersection 
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Important Details 

• For leaves, do NOT report 
intersection if t is not in [tnear, tfar].  
– Important for primitives that overlap multiple nodes! 

 
• Need to take direction of ray into account 

– Reverse back and front if the direction has negative 
coordinate along the split dimension 

• Degeneracies when ray direction 
is parallel to one axis 
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Important Details 

• For leaves, do NOT report 
intersection if t is not in [tnear, tfar].  
– Important for primitives that overlap multiple nodes! 

 
• Need to take direction of ray into account 

– Reverse back and front if the direction has negative 
coordinate along the split dimension 

• Degeneracies when ray direction 
is parallel to one axis 
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Questions? 



Where to split for construction? 
• Example for baseline 
• Note how this ray traverses easily: one leaf only 
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Split in the Middle 

83 

• Does not conform to empty vs. dense areas 
• Inefficient traversal – Not so good! 



Split in the Median 

84 

• Tries to balance tree, but does not conform to empty 
vs. dense areas 

• Inefficient traversal – Not good 



Optimizing Splitting Planes 

• Most people use the Surface Area Heuristic (SAH) 
– MacDonald and Booth 1990, “Heuristic for ray tracing 

using space subdivision”, Visual Computer 
• Idea: simple probabilistic prediction of traversal cost 

based on split distance 
• Then try different possible splits and keep the one 

with lowest cost 
• Further reading on efficient Kd-tree construction 

– Hunt, Mark & Stoll, IRT 2006 
– Zhou et al., SIGGRAPH Asia 2008 
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Surface Area Heuristic 

• Probability that we need to intersect a child 
– Area of the bbox of that child  

(exact for uniformly distributed rays) 
• Cost of the traversal of that child 

– number of primitives (simplistic heuristic) 
• This heuristic likes to put big densities of primitives 

in small-area nodes 

86 



Is it Important to Optimize Splits? 

• Given the same traversal code, the quality of Kd-tree 
construction can have a big impact on performance, 
e.g. a factor of 2 compared to naive middle split 
– But then, you should consider carefully if you need that 

extra performance 
– Could you optimize something else for bigger gain? 
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Efficient Implementation 

• Not so easy, need ability to sort primitives along the 
three axes very efficiently and split them into two 
groups 

• Plus primitives have an extent (bbox) 
• Extra tricks include smarter tests to check if a 

triangle is inside a box 

Node 

bbox of triangle 
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Hard-core efficiency considerations 

• See e.g. Ingo Wald’s PhD thesis  
–   

• Calculation 
– Optimized barycentric ray-triangle intersection 

• Memory 
– Make kd-tree node as small as possible 

(dirty bit packing, make it 8 bytes) 
• Parallelism 

– SIMD extensions, trace 4 rays at a time, mask results 
where they disagree 

89 

http://www.sci.utah.edu/~wald/PhD/

http://www.sci.utah.edu/~wald/PhD/


Pros and Cons of Kd trees 

• Pros 
– Simple code 
– Efficient traversal 
– Can conform to data 

 
• Cons  

– costly construction, not great if you work with moving 
objects 
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Questions? 

• For extensions to moving scenes, see Real-Time KD-
Tree Construction on Graphics Hardware, Zhou et 
al., SIGGRAPH 2008 
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Stack Studios, Rendered using Maxwell 

Questions? 
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